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1  Introduction
In the Internet era, with the convergence and integration of information technology and 
human production and life, big data has exerted a significant impact on economic devel-
opment, social governance and people’s lives. Through big data analysis, user groups 
can be more reasonably divided to provide more accurate services. However, when the 
big data platform provides a large amount of data to some technology companies for 
data analysis, it will inevitably increase the risk of users’ privacy information disclo-
sure, which is the focus of concern in the financial and medical fields. In order to reduce 
the negative impact of privacy information disclosure, the United States, the European 
Union, China and other countries or organizations continue to improve privacy protec-
tion regulations to regulate enterprises and individuals, so as to reduce or limit the shar-
ing and opening of data [1].
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In this context, big data analysis and research often encounter problems such as lack 
of data and too few training samples. In order to solve this problem, the current research 
ideas are mainly carried out from two aspects: information hiding and data generation. 
From the perspective of data hiding, for example, health care organization (HCO) can 
reduce the risk of information leakage by interfering with potential identifiable attributes 
through generalization, suppression and randomization and then sharing data [2, 3]. 
However, criminals can still restore the personal tags corresponding to the data through 
the remaining attribute information, so as to restore the original data.

With the development of deep learning and various learning model proposed, data 
generation based methods have attracted more and more attention in the field of data 
privacy protection. Its main idea is to capture the potential distribution structure of data 
sets by learning from very limited real data, and then generate synthetic data having 
similar distribution with the real data, so as to solve the problem of data deficiency [4]. 
In this work, we focus on generating high-dimensional mixed-type (continuous and dis-
crete) data, compared with single-type data no matter continuous or discrete, which is 
a more important and challenging problem on its own. We propose a new data genera-
tion architecture which combines the versatility of an autoencoder with the recent suc-
cess of Adversarial Networks (GANs) on complex data type. To assess the quality of the 
synthetic data, we define several new metrics that evaluate the performance of synthetic 
mixed-type data compared to the original data.

2 � Related works
Nowadays, depth-generation model has been proved to be a highly flexible and express-
ible unsupervised learning method that can capture the potential structure of complex 
high-dimensional data. The well-trained depth generation model can effectively simulate 
the complex distribution of high-dimensional data and generate synthetic data similar 
to the original data [5, 6]. Early work on data generation are more widely based on Vari-
ational Autoencoder(VAE) [7], such as Variational Lossy Autoencoder [8], DVAE++ [9] 
and ShapeVAE [10]. These method have been shown to be efficient and accurate to cap-
ture the latent structure of vast amounts of complex high-dimensional data. However, 
they can not handle data with discrete featrues let alone continuous and discrete mixed 
data generation. Recently, Nazábal [11] proposed a general framework named HI-VAE, 
which is suitable for heterogenous data generation and presents competitive predictive 
performance in supervised task.

The GANs model have achieved great success in the field of synthesize image genera-
tion, such as MMD-GAN [12], AdaGAN [13] and WGANs [14], which adopts the idea of 
antagonistic game and consists of two parts, generator G(·) and discriminator D(·) : the 
generator learns the distribution of the real samples and generates fake data to simulate 
the real data; the discriminator aims to distinguish between the real data and the fake 
data [15, 16].

With the practical application and theoretical development of GANs, more and more 
data scientists scholars have turned their attention to the this model [17]. At present, 
most researches related to GANs are focused on continuous datasets, but the application 
of big data science usually involves discrete variables with multi-label features. Train-
ing networks with discrete outputs is a main challenge that curbs the application of the 
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GANs in the field of big data analysis. The main difficulty behind this is that the output 
of the network is always transformed by softmax function into a multinominal distribu-
tion. However, sampling from this distribution is not a differentiable operation, which 
curbs the gradient flow to back propagate during the training of GANs for data with 
discrete features. To tackle this problem, the Gumbel-softmax technique is proposed to 
be equipped in the VAE and GANs based method for sequences discrete data generation 
[18–20]. Aiming at the same problem, seqGAN [21] proposes a stochastic strategy based 
on reinforcement learning to avoid the back propagation of discrete sequences.

Another method to avoid the back propagation of discrete data is Adversarially reg-
ularized autoencoders(ARAE) [22]. The author transforms the discrete words learned 
from text into continuous potential feature space, and uses GANs to generate poten-
tial feature distribution, which effectively improve the training stability and obtain a loss 
more correlated with sample quality. medGAN proposed by Choi et al. [23] is inspired 
from this concept, which can learn the realistic healthcare patient records and generate 
the synthesize data. The model hybrid the autoencoder with GANs, which first pre-train 
an autoencoder and then the generator maps latent code space back to original space, 
and the discriminator receives the fake data from generator or sample from real data to 
form an adversarial learning.

To improves the medGAN for generating of multi-label variables, Camino et al. [24] 
proposed Multi-categorical GANs based on the concept of medGAN. The idea behind it 
is to encode the multi-label variables into a binary representation using one-hot encod-
ings [25], and apply Gumbel-Softmax [18] to solved the problem of multi-label data back 
propagation which improves the computation stability and convergence speed.

To the extent of our knowledge, most of the GANs based data generation work are 
focus on single type feature data generation, numerical type or discrete type. Apart 
from these research, we propose a mixed-type date generation model based on GANs, 
which improves the performance of mixed-type data generation by leveraging the fact 
that autoencoder has the ability to learn the intrinsic characteristic of mixed-type fea-
tures and build the generator in the code space. The proposed framework equip the 
Gumel-softmax technique to deal with the problem of undifferential of discrete random 
varialbes, and optimized the loss function to balance the gradient flow coming from 
different mixed type features. We also provide elaborate empirical evaluation for gen-
eration model based on the Lending Club datasets. The results demonstrate that the 
proposed method has better performance than state-of-the-art VAE based method [11] 
not only in terms of approximation of distribution for single feature by also for approxi-
mation of the correlation between features.

3 � Methods
3.1 � Description of mixed‑type data

In this paper, we assumes that the features of the data is composed by two types: numer-
ical type and muti-label type. The data space is defined as S = (W × V) , where the 
numerical space W = W1 × · · · ×WM(W ∈ R

M) . In numerical space, we define random 
vector as x = (x1, . . . , xM) ∈ W . The multi-label space is formed as V = V1 × · · · × VN , 
Where Vi represent each multi-label feature(such as men and women, some possible 
occupation, etc.), the number for each categories per label is defined as di = |Vi| . We 
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also define the random variable in space V as v = (v1, v2, . . . , vN ) ∈ V , and each label 
variable vi is encoded by one-hot and denoted as a vector yi ∈ {0, 1}di . So the random 
variable in space S can be fully expressed as S = (x, y) = (x1, . . . , xM , y1, . . . , yN ) , and 
yi = (yi,1, . . . , yi,di).

3.2 � The proposed mixGAN

The mixGAN proposed in this paper first pre-trains an autoencoder, which maps the 
mixed data space to a low-dimensional continuous space. Due to the fact that the intrin-
sic feature of the data can be more efficiently represent in the mapped low-dimensional 
continuous code space, the generator G(·) of the mixGAN is established in code space. 
The discriminator D(·) is established in the original mixed-type data space to identify the 
real data or fake data. The mixGAN is obtained by joint antagonistic learning between 
the generative network G(·) and discriminator D, and trained across over the original 
space and code space. Our mixGAN model is represented from the Pre-autoencoder to 
GANs respectively.

3.2.1 � Pre‑autoencoder

The autoencoder is composed by a encoder and a decoder. The encoder compresses the 
original high-dimentsional data to the low-dimension code space. Then, the decoder 
maps the code space back to the original data space. The auto-encoder network is trained 
to obtain encoder and decoder network, so that after the original data x go through the 
whole autoencoder system, the output of the network is a good approximation x̂ to the 
input. Our proposed Pre-autoencoder modifies the traditional autoencoder by replacing 
the last output layer with a mixed-type layer output, which is formed by N + 1 parallel 
features extraction Dense layers as shown in Fig. 1. At the end this parallel structure are 
the activation output function to transfer the components back to their original features. 

Fig. 1  Autoencoder
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The parallel structure of the output layer model not only guarantees the independence of 
the each single feature but also maintains the interdependence between features.

The encoder network is simply composed by two layers FCN. The decoder network 
is firstly composed by two FCN mapping the code space to a continuous lower vector, 
after that, there is an N + 1 parallel data type separation networks Dense0, . . . , DenseN ] , 
where Dense0 represents the generation of multiple numerical vector x = [x1, . . . , xM] , 
which are activated by sigmoid layer. [Dense1, . . . , DenseN ] represents the generation 
of N one-hot encoded vectors y = [y1, . . . , yN ] , which is activated by Gumbel-Softmax 
layer for output. Finally, all the output results are concatenate together to obtain the gen-
erated mixed data ŝ = [x̂, ŷ] = [x̂1; . . . ; x̂M; ŷ1; . . . ; ŷ] . The model is shown in Fig. 1.

In this model, the Gumbel-softmax sampling technique is used to sample the discrete 
distribution, which widely used for discrete data generation, since it has the ability to 
solve the problem of discrete random data back-propagation [18]. Gumbel-softmax 
sampling technique models the hidden variable as a discrete multinomial distribution, 
and the transformation process satisfies the following formula:

where j = 1, . . . ,N  , k = 1, . . . , dj , and aj is the output of full connection layer Densej , 
and aj,k is the output of Densej ’s k-th component. τ ∈ (0,∞) is a hyperparameter greater 
than zero, which controls the softening degree: the higher the τ value is, the smoother 
the distribution; The lower the τ value is, the closer the generated distribution is to the 
discrete One-Hot distribution. In the process of training, the real discrete distribution 
can be approached gradually by gradually decreasing τ . Let gi be i.i.d samples drawn 
from Gumbel(0, 1) = − log(− log(ui)) with ui ∼ U(0, 1).

Our pre-autoencoder loss function is shown in (2), which is compose of two parts: the 
the mean square error is utilized for the loss of numerical type and cross entropy error is 
utilized for the loss of multi-label type. Before input the training data to our model, we 
will first normalize the numerical features to (0,1), which can balance the two type of the 
loss in (2) and address the problem that the numerical type loss would dominate all loss 
and lead to poor performance for multi-lable type data approximation.

where xm represents the m-th component of x , yj,k represents the k-th component of 
multi label feature yj , and B is the size of training batch.

3.2.2 � Generative adversarial network

The generative confrontation network consists of two network modules: the generator net-
work and the discriminator network [15]. The generator G(z; θg ) learns the distribution of 
the training data, and converts the input random prior distribution into a generated sample 
G(z) with a similar distribution to the training data. The discriminator D(x; θd) is a two type 
classifier used to determine whether the input data set is a real sample or a generated fake 

(1)yj,k =
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sample, that is, the discriminator will output a larger probability for real data, and a smaller 
probability for false data. In the training process, G(·) and D(·) are made to play against 
each other until the data generated by G(·) can “cheat” D(·) . the optimization goal of the 
above game process can be expressed as:

where Pdata represents the distribution of real samples, and Pz represents a random prior 
distribution subject to N (0, 1) . In the process of alternating training G(·) and D, the 
parameter optimization follows the following iterative formula:

where B is the size of each training batch, and α is the iterative step size of the optimizer.

3.2.3 � The architecture of mixGAN

The proposed mixGAN is constructed across the code space and original space. The 
method is inspired by the recent successes in discrete data generation using GANs [24], 
which addressed the difficulty of discrete random variable back propagation by using Gum-
bel-softmax sampling technique. We use the encoder which comes from the pre-trained 
autoencoder to map the original data to a low-dimensional continuous code space, where 
we build the GANs based generator.

basedUtilize this concept, the generator network G(z) transfer the standard gaussian 
variable z ∼ N (0, 1) to code space, then, the Decoder network Dec(·) maps the generated 
continuous variable back to original space ŝ . This process is shown in Fig. 2, and can be 
expressed as Dec(G(z)) appeared in generation loss (7). The discriminator D(·) is build in 
the original space, which judges weather the input item is real or fake by using the discrimi-
nation loss (6).

The proposed mixGAN is an architechture coupling the pre-autoencoder model and 
GANs structure, which combines the ability that the pre-autoencoder can capture the 
mixed-type data information and the ability of GANs which has high performance for con-
tinuous data generation. At the same time, the limitation of the discrete data learning ability 
of GANs is solved by this architechture.

As shown in Fig.  2, the data generated by the generator G(·) is decoded before being 
imported into the discriminator. It can be seen that the discriminator D’s judgment of the 
authenticity of the data is performed in the original space. In the training process, the loss 
functions for discriminator D(·) and generator G(·) are represented in (6) and (7):

(3)min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)] + Ex∼Pz [log(1− D(G(z)))]

(4)θd ← θd + α∇θd

1

B

B
∑

i=1

(log(xi)+ log(1− D(G(zi)))

(5)θg ← θg + α∇θg

1

B

B
∑

i=1

logD(G(zi))

(6)Ld =
1

B

B
∑

i=1

(logD(xi)+ log(1− D(Dec(G(zi)))))
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During the main training phase, the gradients flow from the discriminator to the decoder 
and afterwards to the generator, and the decoder will be fine-tuned while optimizing the 
generator.

4 � Experiment
To assess the performance of our model, we use HI-VAE method [11] as a benchmark, 
we uses it as a benchmark for comparative evaluation. HI-VAE distinguishes between 
different feature types in the data when encoding and decoding, and designs a corre-
sponding probability model for each type. According to the probability model corre-
sponding to each features, the HI-VAE encoder processes the feature individually, and 
aggregates all attribute processing results to generate the code. The HI-VAE decoder 
performs the inverse process of the above processing, that is, the code is converted into 
various feature values and concatnate together.

4.1 � Data acquisition

Our training dataset is a subset of high dimensional bank customs, which is hosted by 
Lending Club [26]. We randomly sampling 10,000 recorders from the original dataset, 
which are partitioned by 9:1 for training set and test set. The original dataset has 31 fea-
tures, and we removed the 7 of them which have constant value. We rearrange the fea-
tures of the dataset, so that the features of the dataset matches our data model; first 15 
features are numerical type and the rest 9 features are mult-label type with One-Hot 
coded. Hence, we have si = [x1; . . . ; x15; y1; . . . ; y9] , and category number for each label 
type is listed as (2, 2, 2, 12, 2, 7, 29, 4, 3).

(7)Lg =
1

B

B
∑

i=1

logD(Dec(G(zi)))

Fig. 2  mixGAN
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There is a common problem in the big data processing, that is, most time the numeri-
cal type values always have quite different magnitude than One-hot coded label type. 
Therefore, if we training the model using the raw data, the gradient flow come from the 
numerical type will dominant the back propagation, which will weaken the learning 
ability and reliability. In our experiment, we utilize Min–Max normalization method to 
stretch the range of the numerical features into 0–1, in order to make their ranges have 
similar magnitude with the one-hot coded multi-label features. Empirically, the normali-
zation process not only improves the accuracy of the model but also accelerate the con-
vergence of the training.

4.2 � Implementation details

The proposed pre-autoencoder of the model contains two hidden FCM layers for both 
encoder and decoder, all the layers are activated by tanh function. We empirically set the 
latent continuous code space to 72 dimension, and the hyperparameter τ appeared in 
Gumbel-Softma activation function is set as 0.6.

For GANs training, the generator G(·) and discriminator D(·) of GANs are all imple-
mented based on FCM with 3 layers for each, which are [256, 128, 72] and [128, 64, 1]. 
The batch normalization skill is also used between the layers. Referring to the work in 
[24], the hidden layers in G(·) are activated by Tanh function, while the hidden layer 
of D(·) are activated by LeakyRelu function. We use Adam algorithm to optimize the 
model, and set the learning rate lr = 0.002 and set weight decay as 0.001. The batch size 
is set as B = 100 . Finally, the training time of the pre-autoencoder is 52.30s, and the 
training time of the mixGAN model is 880.64s.

5 � Results
To evaluate the performance of the GANs is widely known as a difficult task [27]. Borji 
[27] provides a range of commonly used metrics used for assessing the performance of 
the GANs, but they are not suitable for big data generation evaluation. In this paper, 
we suppose that if the generated data have a good approximation to the original data, 
it should satisfy the following two conditions: firstly, in terms of each single feature, the 
distribution of the generated value should be as close as possible to the real data dis-
tribution; secondly, The dependency among features should be similar to that of real 
data. Based on the above assumptions, we evaluates the performance of the mixGAN 
from perspective of the distribution approximation for single feature and the correlation 
maintenance between features.

5.1 � Distribution approximation for single feature

To evaluate the approximation for independent distribution in each feature, we deals 
with the features of the numeric type and the label type respectively. For the numerical 
type xi , we quantified the interval (0–1) into 10 bins, by which we can calculate the his-
tograms of the generated and the original feature. After that, we pair each histogram bin 
using the original real distribution and the generated fake data (Preal,Pfake) . Similar to 
the concept of the joint histogram, if the two random variables have similar distribution, 
the paired points (Preal,Pfake) should located diagonally alone joint distribution coordi-
nate plane.
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The similar concept is applied to the mult-label type features. We can see that each 
component of the yi,j is either 1 or 0, since the label type yi has been one-hot coded. 
Hence, we accumulate all data across the each feature component yi,j and denoted it 
with Preal and Pfake for original label feature and generated label feature. It can be proved 
that if the synthesized label type features yi have a good approximation to the original 
data, the paired points (Preal,Pfake) should also distribute alone the diagonal of the coor-
dinate plane.

Following these concept, we plot the paired points (Preal,Pfake) in the Fig.  3, where 
the (a) is drawn by using our proposed mixGAN, and (b) is drawn using the HI-VAE 
proposed in [11]. The circular point represents the label type, and the star point repre-
sents the numerical type. We can find Fig. 3 that mixGAN has a apparently better per-
formance than HI-VAE in independent feature approximation, since the paired points 
come from mixGAN, not only the numerical type or label type, are all distributed more 
closer to the diagonal than HI-VAE.

5.2 � Correlation maintenance between features

The basic idea for assessing the correlation between features of generated data is: in gen-
erated dataset, the impact for a feature fi come from the rest of the features should be as 
similar as possible to the original data. According to the concept, we establish a learning 
model to estimate the feature fi by using the rest features. The model is formulated as a 
multi classification task, when fi is of multi-label type, and formulate it as a regression 
task when fi is of numerical type. We denote the estimation loss for fi by using the real 
data as Ei

real , and Ei
fake for the generated data.

In testing, all the estimation model is formed by FCN, but the loss function is for-
mulated depend on the feature type of fi . We formulate the loss function for numerical 
feature fi as 1N

∑N
j=1(x

i
j − x̂ij)

2 , and formulate the loss function as 1N
∑N

j I(yij = ŷij) where 
I(·) is indicator function, and N is the total number of samples in testing set.

In Fig. 4, we plot all the paired points (Ereal,Efake) in the plane, where (a) and (b) are 
the estimated errors by using the mixGAN and HI-VAE [11]. It shows that the proposed 
mixGAN method is superior to HI-VAE in the maintenance of features correlation espe-
cially better for numerical type features.

Fig. 3  Generated the distribution map for matching the independent attributes of data and real data
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6 � Discussion
In this work, we proposed mixGAN, which uses generative adversarial framework to 
generate the synthetic mixed-type data. Apart from the traditional method, our frame-
work improves the performance of generated data by leveraging the fact that autoen-
coder has the ability to learn the intrinsic characteristic of mixed-type features and build 
the generator in the code space, which also solved the problem of gradient back propa-
gation for discrete variables. We also provide elaborate empirical evaluation for genera-
tion model based on the Lending Club datasets, which demonstrate that our method has 
better performance not only in terms of approximation of distribution for single feature 
but also for approximation of the correlation between features.

In the future, we are planning to improve the robustness of the model, so that the 
model can generate synthesis mixed-type data even when some of the features are miss-
ing in the original data samples. This will widen the extent of application of our model.
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