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1  Introduction
The significant advances of internet and multimedia technology have promoted large 
amounts of digital message acquisition, processing, and transmission on public chan-
nels in recent years. In particular, most of these messages transferred on public channels 
are secret and sensitive, and they are very fragile at being damaged and counterfeited 
by intentional attacks. Thus, an essential issue to be considered is to ensure the security 
of messages in covert transmissions. A traditional method to protect secret message is 
cryptography [1, 2] in which the sender encrypts the messages with a specified key and 
then delivers them to the intended receiver. The receiver can retrieve the original mes-
sages after decryption. Nevertheless, it is just very time-consuming to perform the pro-
cesses of encryption and decryption due to the complicated cryptographic algorithms 
that are used. To remedy the weakness of cryptography, data hiding has been put for-
ward and emerged as a dominating method for message protection.
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Data hiding (steganography) is referred to as a technique that embeds secret mes-
sages into a trustable cover carrier, such as text, image, audio, and video, for secure 
information conveying [3–10] and digital forensics [10, 11]. Given that image is the 
most extensively utilized cover carrier, researches on image data hiding is flour-
ishing. In contrast with cryptography, the messages concealed in the image can be 
imperceptibly delivered to the receiver, greatly reducing the suspicion raised by mali-
cious attackers. Unfortunately, some image distortions are inevitably introduced by 
embedding secret messages [5, 6]. Thus, the most important task must be to dimin-
ish these distortions as far as possible for avoiding the awareness of the existence of 
hidden messages. Therefore, visual quality and embedding capacity are considered as 
key performance indicators for image data hiding [4]. Visual quality is defined as the 
distortions to the cover image after embedding, while embedding capacity indicates 
the total amount of data embedded in the cover image. Ideally, good visual quality 
and embedding capacity are expected to be achieved simultaneously. However, these 
two factors can inversely affect each other, that is, increasing the visual quality would 
incur some decrease in embedding capacity.

Without loss of generality, conventional image data hiding falls into three catego-
ries, i.e., the methods for the spatial domain, for the transformed domain, and the 
compression domain [3, 12]. The spatial domain-based method is probably the most 
intuitive of data hiding options that straightly embed secret messages into pixel val-
ues of the original cover image. Some popular kinds of data hiding algorithms in the 
spatial domain are the least significant bit (LSB) [4, 13], prediction error [5], histo-
gram-based approaches [7], secret sharing method [14], modulo operation [8, 9], and 
quantization-based methods [15]. Generally speaking, the spatial domain has a higher 
embedding capacity. However, it has some drawbacks such as it generates visual dis-
tortion and has insufficient robustness. On the other hand, scholars introduced the 
transform domain method to embed the secret message by changing the transform 
coefficients so as to improve the robustness. There are several transform domain 
methods which include Discrete Wavelet Transform (DWT) [16–18], Discrete Fou-
rier Transform (DFT) [19, 20], and Discrete Cosine Transform (DCT) [21, 22]. In 
the compressed domain-based information hiding method, cover objects are mainly 
stored in compressed forms, for example, joint photographic experts’ group (JPEG), 
search ordering coding (SOC), and vector quantization (VQ). Furthermore, the com-
pressed domain method joins the compression and information hiding processes, and 
it adequately restricts the perceptual coding attacks [12, 23].

The objective of this research is to hide the secret message using a morphed face 
and the technique of face recognition. Face morphing is defined as a process to trans-
fer one face to another as shown in Fig. 1. Given two images of different person faces 
(as the source and target face image in Fig.  1), it produces intermediate images or 
faces which is called a morphed face.

The main contributions of this paper are summarized as follows:

1.	 We proposed a novel and efficient data hiding method to embed a secret message 
into a morphed face image. An encrypted secret message is sent to the designated 
receiver. The receiver needs to do morphed face recognition to decrypt the parent ID 
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of the morphed face. Based on correspondence between decoded parent ID and the 
secret message table, s/he can further decode the embedded secret message.

2.	 A face morphing technique was presented to produce a large amount of morphed 
face images from a relatively small-scale face image dataset. This greatly contributes 
to reduce the size of image dataset compared to other coverless information hiding 
schemes.

3.	 We proposed two new CNN architectures named MFR-Net V1 and MFR-Net V2 to 
achieve highly accurate morphed face recognition.

4.	 Additionally, the experimental results show that the proposed schema has higher 
retrieval capacity and accuracy and it provides better robustness.

The rest of this paper is organized as follows: Sect. 2 introduces the related works. The 
proposed data hiding scheme and face morphing recognition are depicted in Sect.  3. 
Experimental results and analysis are provided in Sect. 4. Finally, the conclusion is drawn 
in Sect. 5.

2 � Related work
As we know that the traditional data hiding scheme leaves a modification trace on the 
cover image, causing some distortion in the stego-image so that it makes successful 
steganalysis possible. Therefore, many coverless data hiding approaches have been pro-
posed in recent years to address this issue, where the secret message can be hidden with-
out any modification on the cover image.

In 2012, a novel cover selection-based data hiding scheme was proposed by Fridrich 
and Kodovsky [24]. In their scheme, an image is directly selected from the image dataset 
according to the secret message and transmitted to the receiver to implement the secret 
message transmission. Subsequently, the data hiding schemes based on cover selection 
were presented by Sun et al. [25], Chen et al. [26], and Zhou et al. [27]. For a given secret 
message, the image of which the binary bits of hash value equal to the binary bits of the 
secret message is selected and transmitted. At the recipient side, we can easily extract 
the secret message from the received image by the same hash operation.

Additionally, other related studies [3, 28–36] aim to hide the secret message by con-
structing the mapping relationships between the cover image and the secret message. 
In Zhou et al.’s scheme [28], the visual words are firstly extracted from each image using 
a BOW model, and then a mapping relationship between the secret messages and the 

Fig. 1  Face morphing. left: source face image. middle: morphed face. right: target face image
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image visual words is established. In Yuan et al.’s scheme [29] and Zhou et al.’s scheme 
[30], the feature sequences are generated by using the special feature-based hashing 
algorithm. Then, a mapping relationship between the robust feature hash sequences and 
the secret messages is constructed. So, we can transmit natural images, whose features 
are the same as the secret information to receivers. For Zhang et al.’s scheme [3], images 
are classified into several topics using the latent Dirichlet allocation topic model. For 
images in each topic, the robust feature sequence is generated based on the relationship 
of DCT coefficients. Finally, an inverted index that contains the feature sequence, loca-
tion coordinates, and image path is created. To achieve secret transmission, the image 
whose feature sequence equals to a secret message is chosen as the cover image accord-
ing to the index.

In 2018, Zhou et al. [31] proposed a novel coverless data hiding scheme based on par-
tial-duplicate image retrieval for transmitting a secret color image, without any mod-
ification on the cover image. In 2019, a visual vocabulary tree-based partial-duplicate 
image retrieval for coverless image steganography was presented by Mu and Zhou [33]. 
In their scheme, a set of duplicates of a given secret image is used as stego-images, and 
each of those stego-images shares one similar image patch with the secret image. The 
same year, Zou et al. [32] proposed a novel coverless data hiding scheme based on the 
average pixel values of sub-images to address the problem of the lower hiding capacity. 
Inspired by [3], in 2020, Liu et al. [34] proposed a coverless data hiding scheme based on 
image retrieval DenseNet features and DWT sequence mapping. The main difference 
is that the robust feature sequence is generated by the joint use of the DenseNet model 
and DWT of sub-images. Also, Luo et al. [35] proposed another coverless data hiding 
scheme based on the image block-matching and DenseNet model. In 2020, to improve 
the hiding capacity, a novel coverless data hiding scheme based on the Most Significant 
Bit (MSB) technique was proposed by Yang et al. [36]. In [36], the cover image is divided 
into several image fragments and the average intensity of each fragment is calculated. 
Then, a one-to-one mapping between the MSB of the image fragments and the secret 
message is established and served to secret transmission. In 2021, Lu et al. [37] proposed 
a coverless information hiding method based on constructing a complete grouped basis 
with unsupervised learning, and the base image of the complete grouped basis is used to 
map the secret message for obtaining coverless information hiding. Also, Abdulsattar’s 
scheme explored the effectiveness of coverless information hiding using only one cover 
image to transmit secret information based on eigen decomposition, and performed 
coverless information hiding by establishing mapping relationships between the hash 
codes of the image blocks and the characters of the secret message. As a result, their 
scheme achieves a considerable hiding capacity. However, its weakness is that it is dif-
ficult to maintain the quality of stego-image.

Most existing coverless data hiding scheme can resist the steganalysis or achieve a 
considerable hiding capacity. However, generally speaking, the number of natural images 
that is required to represent the secret message is 2n if we want to conceal n-bit secret 
messages into an image. The number of images increases exponentially with the length 
of the secret message, which makes those approaches impractical. This paper proposes a 
secret message transmission scheme based on morphed face recognition. Firstly, a large 
number of the morphed face image are automatically generated from a small-scale face 
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image dataset. Followingly, a mapping relationship between the morphed face images 
and the secret messages is constructed to serve for data hiding. At the recipient side, our 
approach can accurately recover the secret image from the morphed face image using 
the proposed morphed face recognizer based on our proposed CNN model.

3 � Proposed data hiding method
In this section, we present the process of our proposed data hiding and extraction 
scheme. The flowchart of our approach is shown in Fig. 2.

In our proposed data hiding scheme, we collect a lot of images from the internet to 
construct a face dataset. Let us assume that this dataset has N images and those images 
are sorted with any pre-defined rule, such as sorting by the alpha-numeric order of the 
last names. By randomly picking two faces to form a pair, the total number of pair that 
can be formed is N(N + 1)/2 (assuming the two faces in a pair can be the same identity). 
By applying the proposed face morphing technique (which will be described in detail in 
Sect. 3.1) to any pair, a morphed face can be synthesized. Therefore, a set of morphed 
faces (the number of which is N(N + 1)/2) can be generated, and the specific order for 
each morphed face is recorded as well. Followingly, a mapping relationship between the 
morphed face images and the secret messages is constructed to serve for data hiding. 
Specifically, the sei-th morphed face image is used to carry secret digit sei. During the 
process of data hiding, the morphed face image is firstly selected according to the secret 
digit and then transmitted through the internet such that the secret digit sei has been 
imperceptibly carried. Among them, the secret digit sei is the encryption version of the 
secret message si. It is also worth noting that, the dataset and its sorting rule should be 
shared in advance for both the sender and recipient.

Face 
morphing

Image 
dataset

Morphed 
image 
dataset

Secret digit 
si

Data hiding

Encryption

Kh

sei
The sei-th morphed 

face image

Transmission

Morphed 
Face 

Recognition

Data 
extraction

Image 
dataset

Secret digit 
si

Kh

Morphed face 
image

Parent image 1

Parent image 2
Fig. 2  Flowchart of our approach for secret message transmission
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When the recipient receives the morphed face image, it can extract the secret digit 
with error-free. Firstly, the recipient feeds the morphed face image into the morphed 
face recognizer, which decodes (recognizes) the two corresponding parent identity. 
Then, the mapping relationship can be reconstructed using the pre-shared image 
dataset and sort rule. After that, according to those parent identities, the order num-
ber of the morphed face image can be decoded according to the pre-shared sorting 
rule. As a result, the secret digit sei is determined and further decrypted as si using 
encryption key Kh.

3.1 � Face morphing technique

In this paper, face morphing is defined as a process to generate a sequence of transi-
tional images from a source face image and a target face image, making that the mor-
phed face image implicitly has the similar appearance from both parent images. The 
overall flow of the proposed face morphing algorithm is given in Fig. 3. Firstly, sev-
eral landmarks are selected both in the source face image and the target image. Using 
the selected landmarks, the relationship between the source face image and the target 
face image is constructed. According to this relationship, the source face image and 
the target face image are warped and then further combined to generate the required 
morphed face images. Details are shown as below.

Landmark 
selection

Landmark 
selection

Source face image Is Target face image It

Relationship
Construction

Warp face 
image

Warp face 
image

Face morphing

Morphed face images 
Im

Landmarks Landmarks

Relationships

Warped source 
image Iws

Warped target 
image Iwt

1 - αα

Fig. 3  The overall flowchart of the proposed face morphing algorithm
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3.1.1 � Landmark selection

The coordinates of the landmarks decide where to warp the source face image and the 
target face image. Also, it is crucial for achieving a good visual quality of the morphed 
images. Thus, the selection of the landmarks should be good enough to represent the 
features of the source face image and the target face image. For example, the land-
marks should be located on the edge of the eyes, nose, mouth, and facial contour, 
etc. Among them, Supervised Descent Method (SDM) algorithm [38, 39], which has 
achieved impressive performance for the face alignment tasks, is employed to detect 
facial features for the purpose of precise features localization. Figure  4 shows the 
flowchart of landmark selection. The process of this algorithm is described as follows:

Step 1: Facial landmarks selection
Firstly, using SDM algorithm, several landmarks located on face contour, eye, eye-

brow, pupil, nose, and mouth, are automatically selected. Moreover, it is worth men-
tioning that, some auxiliary interpolation landmarks are calculated and added as the 
facial features compared to the landmark selection in basic SDM, in order to make 
the face image wrapping more accurate and smoother. As we can see from Fig. 4a, the 
result of facial features selection for the image Is is illustrated as Is1, where there are 
92 landmarks in total on the face region.

Step 2: Edge landmarks selection
Inspired by the idea of Mao et al.’s scheme [40], we first detect the edge outline of 

the image Is using the Canny operator, as shown in Fig. 4b. Take the point on the tip 
of the nose which has been located during Step 1 as the origin of the axis and two 
axes can be determined. Then, the landmarks located on the edge outline is selected 
by the following procedure:

Step 2–1: Find the topmost point and the bottom-most point, for which the x-coor-
dinates are Etop and Ebottom, respectively.

Step 2–2: For each row from Etop to Ebottom, search the edge point from right to 
the center axis and determine the first edge point in each row as the candidate point 
on the right part of the face outline. Similarly, search the edge point from left to the 
center axis and determine the first edge point in each row as the candidate point on 
the left part of the face outline.

Improved SDM 
algorithm 

based selection

Edge detection 
based selection

Landmarks 
combination

Is1

Is

Is2

Is3

Etop

Ebottom

Center axis (Vertical)
Etopf

Eeyeb

(a) (b)
Fig. 4  The algorithm of landmark selection. a Lankmarks combinations; b edge outline of the image
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Step 2–3: Find the topmost point of the forehead region near the vertical axis, for 
which the x-coordinates are Etopf. According to the landmarks on the eyebrow marked in 
Is1, we find the top point of the eyebrow, for which the x-coordinates are Eeyeb.

Step 2–4: For each row from Etopf to Eeyeb, find the edge point from the center axis 
to its right and consider the first edge point in each row as the candidate point on the 
right part of the forehead region. Find the edge point from the center axis to its left and 
consider the first edge point in each row as the candidate point on the left part of the 
forehead region.

Step 2–5: Among the aforementioned candidate points, select 72 points in total as the 
final landmarks on the edge outline. Therein, there are 53 landmarks distributed on the 
face outline and others are for the forehead region. The result of edge landmarks selec-
tion for the image Is is illustrated as Is2.

Step 3: Combine the landmarks on Is1 and Is2, to derive the final version of landmarks, 
i.e., Is3. Note that, the 8 landmarks located on the cheek region provided by Is1 are 
employed in our experiments, rather than those of Is2.

3.1.2 � Relationship construction

After the landmarks of the images Is and It have been prepared, the projection relation-
ship between the coordinates of the landmarks of the Is (or It) and those of the warped 
image Iws (or Iwt) is constructed. Here, let us assume the coordinates of the landmarks 
of the image Is and It are Cs and Ct, respectively. The matrices Cs and Ct are sized K × 2, 
where   Ks the quantity of the selected landmarks. Hence, the coordinates of the land-
marks in the wrapped face image can be determined as

where α is the morphing ratio, which represents the contribution percentage of the 
source face image for synthesizing the warped face image. Correspondingly, the contri-
bution percentage of the target face image is (1 − α.

Based on the determined landmarks (e.g., Cw, Cs, Ct), some triangle areas are con-
structed without overlapping. An example of constructing triangle areas is given in 
Fig. 5. As we can see, each triangle area includes three pairs of coordinates of the land-
marks. Taking the Is and Iws as an example, the relationship of coordinates of landmarks 
is constructed as follows:

(1)Cw = αCs + (1− α)Ct,

Fig. 5  An example of constructing triangle areas using landmark set
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Step 1: Construct the triangle areas on Is and denoted as TRs, construct the trian-
gle areas on Iws, and denoted as TRws.
Step 2: Take a triangle area from TRs and TRws. Calculate the differences by

Step 3: According to the differences, coordinate alignment of TRs is performed by

Step 4: Construct the relationship of coordinates of pixels with the triangle 
area. For each coordinate (TRws(x), TRws(y)), its projected coordinate (TR’ws(x), 
TR’ws(y)) can be projected as

	 where (TRs
′(x’), TRs

′(y’)) represents the coordinate of the pixel which locates 
inside the triangle area TRs.
Step 5: Perform Steps 2 to 4 until all triangle areas have been processed.

Finally, we can obtain the TRws
′. It means that, in the morphing phase, the pixel val-

ues in Is (TRws′(x), TRws′(y)) will be filled into the pixel values in Iws (TRws(x), TRws(y)). 
In the same way, we can also construct the projection relationship between the coor-
dinates of the landmarks of the It and those of the warped image Iwt. The result is rep-
resented as TRwt′, which indicates that the pixel values in It (TRwt′(x), TRwt′(y)) will be 
filled into the pixel values in Iwt (TRwt(x), TRwt(y)).

3.1.3 � Face morphing

After the relationship construction, the set of TRws′ and TRwt′ are obtained. Thus, the 
warped face images Iws and Iwt are performed by

Finally, the morphed image is derived using Eq. (7).

where Im
(

x, y
)

 represents the pixel value of the coordinate (x, y) in the morphed image. 
An illustration of the morphed image set is given in Fig. 6, where α varies from 0.1 to 0.9.
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3.2 � Face morphing recognition

In this section, we presented our proposed MFR-Net network to perform the mor-
phed face recognition. Furthermore, we also conduct a comparison between the pro-
posed network and other well-known deep learning networks.

3.2.1 � MFR‑Net V1

The details of the proposed MFR-Net V1 network are presented in Table 1 and the archi-
tecture diagram is shown in Fig. 7. In this paper, we constructed two smaller networks: 
one for identifying parent image 1, and the other for identifying parent image 2. At the 
end, we combine these two networks into one big model that is called MFR-Net V1. 

=0.00 =0.10 =0.20 =0.30 =0.40 =0.50

=0.55 =0.60 =0.70 =0.80 =0.90 =1.00

Source face image Is Target face image It

α α α α α α

αααααα

Fig. 6  A set of example images of morphed images under various α

Table 1  MFR-Net V1 network architecture

Type Output size

Input 224 × 224

Con2D 7 × 7, 64, stride 2
Batch normalization leaky ReLU

112 × 112

Max pool, 3 × 3, stride 2 56 × 56

(Residual block, 64) × 3

(Residual block, 128) × 4 28 × 28

(Residual block, 256) × 6 14 × 14

(Residual block, 512) × 3 7 × 7

Global average pool 512

FC L2 norm, 300-d 300

Softmax
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MFR-Net V1 adopted the idea of shortcut connection in ResNet [41] and uses the Resid-
ual Block (shown in Fig. 8) as the backbone of the network model.

As shown in Eq.  8, in the fully connected layer, we performed the inner product 
between the weights and the feature of the image, which is equivalent to taking the prod-
uct of the L2-Norm of the weights, the feature vectors and the cosθ where θ is the angle 

(8)FCL2Nrom = WT
j xi = �WT

j �
2
�xi�2cosθj

FFeeaattuurree
EExxttrraaccttoorr

FFeeaattuurree   VVeeccttoorr

FFCC  LL22
NNoorrmm  

FFeeaattuurree
EExxttrraaccttoorr

FFeeaattuurree  VVeeccttoorr

FFCC  LL22
NNoorrmm  

IInnppuutt

PPaarreenntt  iimmaaggee  11

PPaarreenntt  iimmaaggee  22

Fig. 7  MFR-Net V1 architecture diagram

Fig. 8  Residual block
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between feature vector and weights. Then rescale according to the first S, and then use 
Softmax as the final output.

In this paper, during network training, we adopted the idea of ArcFace Loss [42] as the 
objective function of network training. As shown in Eq. 9. ArcFace Loss can simultane-
ously enhance the intra-class compactness and inter-class discrepancy.

3.2.2 � MFR‑Net V2

In the subsequent experimental stage, we first use MFR-Net V1 to identify the two sources 
of Morphed Face, and after getting good experimental results, based on MFR-Net V1, we 

(9)ArcFaceLoss = −
1

N

N
∑

i=1

log
escos

(

θyi+m
)

escos
(

θyi+m
)

+
∑n

j=1,j �=ie
scosθj

.

Fig. 9  MFR-Net V2 architecture diagram

Table 2  MFR-Net V2 Network architecture

Type Output size

Input 224 × 224

Con2D 7 × 7, 64, stride 2
Batch Normalization
Leaky ReLU

112 × 112

Max pool, 3 × 3, stride 2 56 × 56

(Residual block, 64) × 3

(Residual block, 128) × 4 28 × 28

(Residual block, 256) × 6 14 × 14

(Residual block, 512) × 3 7 × 7

Global average pool 512

FC L2 norm, 300-d FC L2 norm, 300-d 300

Softmax
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propose a new network architecture MFR-Net V2, which is a simplified and reduced ver-
sion. As shown in Fig. 9 and Table 2, this network uses single feature extractor to extract 
face features and sent them into two fully connected layers, one for recognizing parent one 
and another for parent two. In this way, the complexity of the network is greatly reduced, 
and the recognition speed is twice as fast as the previous version of MFR-Net V1 without 
decreasing accuracy.

4 � Results and discussion
4.1 � Morphed face dataset

In this paper, we used 300 face images as our source dataset. A morphed face is gen-
erated by randomly selecting two face images from the source dataset. Since we allow 
two parent images to be the same, finally, a total number of 45,150 (300,299/2 + 300) 
morphed faces were generated. Also, we use a parameter α to adjust the appearance 
of the generated morphed face to parent image 1 or parent image 2, which allows the 
sender to arbitrarily select the value of α in the application to generate a morphed 
face with a different appearance. The receiver uses the proposed deep learning net-
work model for identification and then decode the secret message. In terms of num-
ber of images in the dataset, 225,750 images with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are used as 
training data, and 180,600 images with α ∈ {0.2, 0.4, 0.6, 0.8} are used as test data.

Table 3  MFR-Net V1 test results for α values

α Parent image 1 Parent image 2 Total

Test accuracy (%)

 0.2 100 99.9977 99.9977

 0.4 100 100 100

 0.6 100 100 100

 0.8 100 100 100

Table 4  Test results of MFR-Net V1 with α between 0.45–0.55 (excluding 0.5)

α Parent image 1 Parent image 2 Total

Test accuracy (%)

 0.45 100 100 100

 0.46 100 100 100

 0.47 100 100 100

 0.48 100 100 100

 0.49 100 100 100

 0.51 100 100 100

 0.52 100 100 100

 0.53 100 100 100

 0.54 100 100 100

 0.55 100 100 100
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4.1.1 � Training parameter fine‑tuning

The image size is of 224 × 224, and the network is trained with 8 Titan X Pascal GPU 
cards with a learning rate of 0.1 and batch size 128. We applied Adam [43] as the 
optimizer, with m = 0.5 and s = 64 (similar as the parameters in [42]). In this study, we 
used two identical CNN models to identify parent image 1 and parent image 2 of the 
morphed face and trained 100 epochs and 200 epochs, respectively. The experimental 
results are shown in Table 3.

As shown in Table  4, we additionally generated and identified the morphed face 
with α between 0.45 and 0.55. We obtained the perfect results and the identification 
speed reach 190 FPS with GPU acceleration of a single Titan X Pascal. This shows that 
it is feasible to use the proposed steganography scheme for information encryption, 
and the decryption process is highly efficient and perfectly accurate, which demon-
strates its robustness and practicability.

We also performed experiments to compare accuracy when using different loss functions. 
Several state-of-the-art loss functions which were proposed in the field of face recognition, 
such as SphereFace (margin is set to 1.35), CosFace (margin is set to 0.35), ArcFace (margin 
is set to 0.5), and combined margin with the three (in the order of the former margin is set 
to 1, 0.2 and 0.3 in sequence), are tested. The results are shown in Table 5. According to the 
results, all loss functions can help us to achieve the perfect results except for Softmax Loss. 
The training data used in this experiment is the same as the former MFR-Net V1, which 
uses 225,750 images (when α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) as training data, and the remaining 
632,100 morphed images (when α ∈ {0.2, 0.4, 0.45, 0.46, 0.47, 0.48, 0.49, 0.51, 0.52, 0.53, 0.54, 
0.55, 0.6, 0.8}) as test data.

We also performed experiments to compare the proposed MFR-Net V2 with a variety of 
state-of-the-art object recognition networks as the backbone of feature extraction. In this 

Table 5  MFR-Net V2 test results

Bold indicates best result

Loss function Test accuracy (%)

ArcFace [42] 100
 SphereFace [44] 99.9996

 CosFace [45] 99.9999

Combined margin 100
 Softmax Loss 0.0001

Table 6  Various feature extractor test results

Bold indicates best result

Feature extractor Test accuracy (%) FPS

MFR-Net V2 100 327

VGG16 [46] 0.00001 306

MobileNet V2 [47] 0.0013 415
DenseNet121 [48] 93.02 290

InceptionResNetV2 [49] 96.85 258
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experiment, the combined margin is adopted as the loss function. And the accuracy and 
speed of various networks are recorded. The results are shown in Table 6. According to the 
experimental results, the MobileNet V2 network has the fastest speed (but with incredibly 
low accuracy), and our proposed MFR-Net V2 network achieved the highest accuracy with 
satisfactory speed.

4.2 � Hiding capacity analysis

In most existing schemes, the secret messages are directly mapped to the feature 
sequence of the image, thus, the length of the feature sequence is proportional to the 
hiding capacity. The larger the hiding capacity is, the more carrier images are needed.

Table  7 shows a comparison among schemes [3, 27, 29, 32, 34, 35] and proposed 
scheme. In schemes [27, 29], the hiding capacity is directly determined by the length 
of the feature sequence, resulting in a hiding capacity of 8 bits in their experiments. 
Schemes [3, 34] achieve the hiding capacity up to 15 bits when they do not consider 
to divide the image into blocks for capacity. For schemes [3, 34], the priori knowledge 
with regard to the mapping relationship between the features and secret messages 
have to be shared between the sender and decoder. Also, the size of the image data-
set in schemes [3, 34] is larger than that in schemes [27, 29]. It is worth mentioning 
that, the higher hiding capacity can be achieved when image division is employed, 
such as schemes [32, 35, 37]. As we can see in Table 7, scheme [37] obtains the hid-
ing capacity with a value of 16 bits. Among which, the image dataset has to be shared 
in advance, which is the same as the proposed scheme. As to scheme [32], it pro-
vides a high capacity up to 80 bits, and a Chinese dictionary with a size of N × 80 
should be shared in advance, where N is the number of images. Its hiding success rate 
is seriously influenced by the value of N. Although their experiments attempt to prove 
that the hiding success rate is close to 1 when N is around 1,000,000, theoretically 

Table 7  Comparisons with the state-of-the-art on hiding capacity under different priori knowledge 
and dataset size

Schemes Size of dataset Hiding capacity (bits) Priori knowledge

Zhou et al.’s scheme [27] 28 = 256 8 None

Yuan et al.’s scheme [29] 28 = 256 8 None

Zhang et al.’s scheme [3] 215 15 (without image division) Mapping relationship

Zou et al.’s scheme [32] 100,000 (hide 
success rate 
≈ 1)

80 Chinese dictionary

Liu et al.’s scheme [34] 215 15 (without image division) Mapping relationship

Lu et al.’s scheme [37] 216 16 Image dataset

Luo et al.’s scheme [35] 1 2601 A mapping sequence and a mapping 
flag; the size of image and image 
fragments

Abdulsattar’s scheme [50] 1 6272 A loop-up table including the loca‑
tion information

Proposed scheme 28 15 Image dataset

300 15

215 29

100,000 32
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speaking, to achieve the hiding success rate of 100%, the number of images N should 
not be less than 280. For scheme [35], it provides the hiding capacity of 2601 bits when 
the image size is set to 256 × 256 and the image fragment is sized 5 × 5. For scheme 
[50], it achieves the highest hiding capacity up to 6272 bits when the image size is 
512 × 512 and image block size is set to 18 × 18. Among these, the mapping sequence 
and mapping flags have to be sent to the receiver along with the secret image. Unfor-
tunately, the mapping sequence and mapping flag have a strong correlation with the 
secret message, which makes this approach impractical.

Our proposed scheme sent the morphed face image, which contained a secret digit, 
to the recipient. Due to a larger number of the morphed face images can be gener-
ated from a small-scale image dataset, thus, a relatively high capacity is provided by 
our approach compared to schemes in [3, 27, 29, 34]. For instance, if the number of 
images in a dataset is N = 28, thus, we can generate N(N + 1) /2 = 28(28 + 1)/2 distinct 
morphed images in total using our proposed face morphing technique. For this, in our 
approach, each morphed image can carry around log2(28(28 + 1)/2) ≈ 15 bits secret 
message, which is greater than the results provided by schemes in [27, 29]. Of course, 
when N is 215, our approach can carry around log2(215(215 + 1)/2) ≈ 29 bits secret 
message, which are 14 bits higher than that of the scheme [3]. Certainly, to imple-
ment aforementioned hiding capacity, the small-scale image dataset should be shared 
between the sender and decoder so that the recipient can successfully decode the 
secret messages by recognizing the parents of the morphed face images. Also, we can 
observe that the hiding capacity of the proposed scheme is lower than that of schemes 
in [32, 35]. That is because those two schemes divide the cover image into several 
sub-images to generate a series of feature sequences so that more secret messages can 

Fig. 10  An example of proposed data hiding scheme. Illustration of the overall process of secret messages 
embedding, sending, receiving and extraction using the proposed method
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be represented. However, more auxiliary information and a larger-scale image data-
set are required in their schemes, which limits their applications. In summary, our 
approach achieves a high hiding capacity while keeping a small-scale image dataset.

4.3 � Feasibility and practicability analysis

In this subsection, we first analyze the feasibility of our findings, including face mor-
phing, morphed face recognition and steganography. In the end, we give a study case 
to further validate the practicability of our findings, as shown in Fig.  10. Details are 
described as follows:

Feasibility in face morphing In our findings, all possible paired face images are mor-
phed into morphed face images and an expanded experimental dataset is synthe-
sized, which contains as many as N * (N + 1)/2 morphed face images. To achieve usa-
ble morphed face images, several face landmarks should be localized and every face 
region should be aligned. Obviously, it is well known that the researches from both 
areas (the face landmark localization [51, 52] and face alignment [38, 53] technolo-
gies) have been developed well and deployed in many practical applications, such as 
Google and Baidu. Not only that, our experimental results also showed the feasibility 
of our proposed face morphing to make service.
Precision in morphed face recognition Firstly, face recognition [44, 54] is a relatively 
mature research field in the computer vision community. However, the goal of the 
face recognition in this study is to recognize the identities of both parents from the 
input morphed face, which is completely different than the traditional face recog-
nition task. To this end, two novel CNN architectures, including MFR-Net V1 and 
MFR-Net V2, are designed to perform morphed face recognition and achieved the 
highest accuracy compared with existing networks (See Tables 3, 4, 5, 6).
Invisibility in steganography In the aspect of steganography, in this paper, the secret 
message is encoded with both parent IDs of the morphed face image, instead of 
modification on any part of the image content itself in spatial or frequency domain. 
Therefore, steganalysis (e.g., statistical analysis on holistic or partial image) is not 
applicable to the proposed method. In other words, the proposed method can easily 
pass any qualitative criteria based on steganalysis. Moreover, the morphed face image 
can effectively conceal the key feature of its parents while maintaining its usage per-
formance, especially in terms of the harmony and recognizability of the morphed 
face.
Case study To validate the practicability of our findings, we visualized a practical case 
study to demonstrate the process of secret messages embedding and extraction by 
the proposed method, as shown in Fig.  10. In Fig.  10, we observed that an image 
dataset which includes 300 face images with pre-defined IDs should be pre-shared 
between the sender and receiver. At the sender’s side, every two face images from 
the dataset are paired to form a morphed face image in turn, and then each morphed 
face image along with its parents is associated with a distinct group ID. For exam-
ple, the two images whose IDs are 116 and 299 are morphed, and its corresponding 
group ID is 28313. When the sender wants to transmit the encrypted secret mes-
sages ‘00000000011101000110111010011001’ (11628313 in decimal), the morphed 
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face images whose corresponding group IDs equal 116 and 28313 are selected and 
transmitted to the receiver. At the receiver’s side, when s/he receives the first mor-
phed face image, its parents can be identified by the proposed CNN model, retriev-
ing the parents’ IDs of 0 and 116. Consequently, the receiver can derive the group ID 
116, and then the encrypted secret message ‘0000000001110100’ is decrypted cor-
rectly. As to the second morphed face image, after the parents’ IDs (i.e., 116 and 299) 
are identified, the encrypted secret message can be decrypted as ‘0110111010011001’. 
Following the similar procedure, all secret messages can be encrypted, sent, received 
and decrypted without any error.

4.4 � Features comparisons

To better explain the difference between our findings and the previously published 
works, we also compared various features among our approach and other existing steg-
anography schemes [3, 5, 6, 9, 27, 29, 33, 34]. Details are analyzed as follows.

Comparison to the traditional steganography schemes: generally, most of the tradi-
tional steganography schemes discussed in literature either exploit the spatial domain 
or frequency domain to hide the secret messages. Those schemes can achieve high 
hiding capacity. However, due to the modification to the raw pixel values, a few dis-
tortions may be introduced in the stego-images, making them difficult to resist sta-
tistical steganalysis. On the contrast, our approach encodes the secret message with 
both parent IDs of the morphed face image, instead of modification to any part of the 
image content. Therefore, our approach is robust to resist statistical steganalysis.

Table 8  Comparisons of features among different schemes

Schemes Coverless Methodology Capacity Scalability 
in dataset

Resist steganalysis

Chang et al.’s 
scheme [6]

No Pixels value modifi‑
cation

Very high None Difficult

Wang et al.’s scheme 
[5]

Pixels value modifi‑
cation

Very high None Difficult

Chang et al.’s 
scheme [9]

Pixels value modifi‑
cation

Very high None Difficult

Zhou et al.’s Scheme 
[27]

Yes Feature based map‑
ping (Hash)

Low (log2N) No Easy

Yuan et al.’s Scheme 
[29]

Feature based map‑
ping (Hash)

Low (log2N) No Easy

Zhang et al.’s 
Scheme [3]

Feature based map‑
ping (DCT)

Low (log2N) No Easy

Mu and Zhou’s 
scheme [33]

Feature based map‑
ping

Low No Easy

Liu et al.’s scheme 
[34]

Feature based map‑
ping (DenseNet)

Low (log2N) No Easy

Proposed scheme Mapping by mor‑
phing and recogni‑
tion (MFR-Net)

High 
(log2((N2 + N)/2))

Yes Easy
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Comparison to the coverless steganography scheme: as can be seen from Table  8, 
either our approach or other coverless steganography schemes embed the secret 
messages by constructing the mapping relation between the secret messages and the 
images. The difference is that the proposed scheme is able to significantly expand 
the size of image dataset, whereas other coverless steganography schemes cannot. 
Therefore, the hiding capacity provided by our approach is a little greater than that of 
existing schemes [3, 27, 29, 33, 34], when the size of source image dataset is the same.

5 � Conclusions
In this paper, we propose a secret message transmission scheme based on morphed face 
recognition. Thousands of morphed face images are produced from an organized small-
scale image dataset and then transmitted to the recipient, thereby performing secret 
message transmission. At the recipient’s side, the secret message is retrieved by decoding 
the morphed face using the morphed face recognizer. In the morphed face recognition, 
we design our own CNN architecture MFR-Net based on deep learning as a backbone to 
extract the features as well as for identification and information decryption. The experi-
mental results and analysis demonstrate that the proposed schema has relatively high 
embedding secret messages capacity. Compared with the existing approaches, our pro-
posed MFR-Net V2 network obtained the highest accuracy rate.

In the future, our research will focus on a more effective scalable strategy for data-
set to enhance the hiding capacity in deep learning based coverless steganography 
schemes, and consider the better representation of secret messages using different types 
of morphed face images of the same parents. In addition, there is also a room for further 
improvement in the aspect of parameters-based face morphing and face alignment.

6 � Method
In our work, we aim to improve the validity and proficiency of the image data hiding 
approach. To achieve this goal, we used a face morphing technique to generate a large-
scale morphed face images from a relative small-scale face image dataset, which contrib-
utes to increasing the capacity in carrying secrets provided by our approach. After that, 
a morphed face image which is encoded with a secret message is sent to the receiver. 
Those experimental results are generated using MATLAB software and the small-scale 
face image dataset consists a group of face images downloaded from Internet.

To recover the secret message and recognizing the parents of the morphed face 
images, we also design two novel Convolutional Neural Network, i.e., MFR-Net V1 and 
MFR-Net V2, to perform morphed face recognition. Those experimental results are 
implemented with Pytorch, and an NVIDIA RTX 3090 GPU is used for acceleration.
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