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1  Introduction
Dynamic spectrum access and sharing can alleviate the spectrum congestion problem of 
wireless communications. The primary users are incumbent spectrum users who share 
underutilized spectrum with the secondary users. Traditionally, the secondary users 
perform spectrum sensing and transmit in spectrum holes to avoid interference to the 
primary users. However, when the primary users quickly switch to different frequency 
channels, the secondary users may obtain outdated spectrum usage information through 
spectrum sensing. Alternatively, the secondary users can predict and adapt to the spec-
trum usage of the primary users [1–5]. We assume that when a primary user experi-
ences excessive interference from the secondary users on a specific frequency channel, 
it will issue some indication or warning. Over time, the secondary users are alerted to 
these channel conflicts and extrapolate future spectrum availability. They will gradually 
adapt to the primary user’s spectrum usage and transmit accordingly to avoid or reduce 
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interference to the primary users. At the same time, the secondary users allocate trans-
mission power over available frequency channels to increase their information rates.

In this paper, the secondary users predict and adapt to the spectrum usage of the pri-
mary users through reinforcement learning. With reinforcement learning, a secondary 
user is an agent who can observe the state of the communication network, take trans-
mission actions, get rewards, and adjust its transmission strategy. The secondary users 
learn the preferred transmission policies through interaction with the communication 
network. They test different frequency channels by transmitting on those channels. If 
the interference to the primary user on a frequency channel exceeds a threshold, the 
primary user will issue warnings about this specific channel. The secondary users receive 
and store these warnings to guide their future decisions. By designing rewards related to 
the ultimate goal, the secondary users can refine transmission policies that specify the 
frequency channels to use and the transmission power levels on those channels.

The reinforcement learning method is a practical solution for secondary user trans-
mission, as it circumvents the problematic requirements of training labels in supervised 
learning. There are other challenges. First, the state space of reinforcement learning is 
large for spectrum access and sharing applications. For this, we employ deep reinforce-
ment learning with the deep Q-networks [6]. Second, since agent actions are continu-
ous-valued transmission power levels on the frequency channels, the action space of 
reinforcement learning is large. For this, we implement deep deterministic policy gradi-
ent algorithms [7–10]. These algorithms exploit an actor-critic architecture that lever-
ages policy-based and value-based learning methods to deliver superior performance. 
We design the deep neural networks in the actor-critic framework to learn the temporal 
and spectral correlations of channel occupancy.

To deal with multiple secondary users coexisting in a communication network, we 
apply multi-agent deep reinforcement learning for dynamic spectrum access and shar-
ing. Each secondary user is an autonomous agent who can interact with the communica-
tion network and make strategic decisions. Together, the agents want to avoid or reduce 
interference to the primary users while maximizing the sum information rate of the 
secondary users. Multiple agents can coordinate with each other. In the secondary user 
network, the agents can (1) exchange the information of rewards, (2) exchange the infor-
mation of rewards and state observations, or (3) exchange the information of rewards, 
state observations, and actions. More coordination leads to better spectrum utilization 
at the cost of slightly higher communication overhead. Numerical results show that the 
secondary users can successfully access and share the spectrum with the primary users 
through actor-critic deep reinforcement learning.

In contrast to related research work, in this work, the secondary users apply deep rein-
forcement learning to the problem of joint channel selection and power control. The 
channel state information (CSI) is entirely unknown to the secondary users. Learning 
from the channel conflict warnings and the received signal-to-interference-plus-noise 
ratio (SINR), the secondary users select and multiplex frequency channels for transmis-
sion. The secondary users allocate continuous-valued transmission power on the chan-
nels. By designing the  reward function, the secondary users can adapt and maximize 
the sum information rate while limiting interference to the primary users. The neu-
ral networks of the actor-critic learning framework are  trained online in a distributed 
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fashion. The rest of the paper is organized as follows. We review recent research on the 
application of deep reinforcement learning to spectrum access and sharing in Sect. 2. In 
Sect. 3, we present the system model and problem formulation. In Sect. 4, we propose 
the dynamic spectrum access and sharing method based on reinforcement learning. The 
actor-critic deep reinforcement learning algorithms are elaborated in Sect. 5. In Sect. 6, 
we discuss multi-agent deep reinforcement learning for multiple secondary users to 
manage spectrum and interference. Experimental methods are described in Sect. 7. The 
results are given in Sect. 8, which show improved spectrum utilization and validate the 
method. Finally, we draw the conclusion in Sect. 9.

2 � Related work
Deep reinforcement learning has been used for multi-channel access and power con-
trol in wireless communications. For the channel selection problem, Wang et  al. [11] 
implemented a deep Q-network (DQN) on a single user for dynamic multi-channel 
access. The channel accessibility was binary, and the transition of the state of multiple 
correlated channels followed an unknown joint Markov model. The user action was to 
select one channel to sense and transmit a packet. The reward was also binary, indicat-
ing whether the transmission was successful, and the user learned to select the channel 
and maximize the expected number of successful transmissions. Naparstek and Cohen 
[12] used a dueling DQN for distributed dynamic spectrum access of multiple users. A 
long short-term memory (LSTM) layer was added to the DQN that maintained an inter-
nal state and aggregated observations over time. Game theoretical analysis was devel-
oped to model and analyze multi-user dynamics. Network training was done offline by a 
centralized unit. The user action was to select the channel to transmit. The reward was 
a network utility that relied on the binary indicator of successful packet transmission. 
Chang et al. [13, 14] used a special type of recurrent neural network (RNN), namely res-
ervoir computing or echo state network, in deep reinforcement learning for distributed 
dynamic spectrum access of multiple users. The RNN exploited the temporal correla-
tions. Each primary user broadcasted warning signals to the secondary users if a signal 
collision occurred. The secondary user observed the imperfect spectrum sensing out-
come, and the action was to select at most one channel to access. The reward function 
was discrete. Zhong et al. [15] used the actor-critic reinforcement learning framework 
for multi-channel access for both single-user and multi-user cases. The multiple chan-
nels were correlated and each channel had a binary state. Modeling the channel selection 
as a partially observable Markov decision process, the user selected channels to access 
by learning the channel switching patterns as well as other users’ action patterns. Huang 
et al. [16, 17] used a double DQN for spectrum access for device-to-device (D2D)-ena-
bled cellular networks. Double DQN avoided overestimation of the Q-values. The D2D 
pairs observed the discrete environment state, including channel availability and a dis-
tance vector. There was a virtual controller that acted as a centralized learning agent. 
The action set was discrete, specifying which D2D nodes to transmit, and the D2D pairs’ 
objective was to maximize the sum throughput or maximize a fairness objective func-
tion while avoiding interference to the cellular users. Doshi et al. [18] and Guo et al. [19] 
implemented multi-agent deep reinforcement learning in the medium access control 
layer for channel access. Through centralized learning and decentralized execution, each 
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user made binary transmission decisions to maximize the long-term average rate [18] or 
improve network performance in terms of throughput, delay, and jitter [19].

For the power control problem, Li et  al. [20] used deep reinforcement learning for 
the case of one primary user and one secondary user. The secondary user learned the 
power control policy and shared the spectrum with the primary user. A set of sensor 
nodes were deployed to collect received signal strength information to assist the sec-
ondary user. The action taken by the secondary user was the transmission power from 
a pre-specified set of power levels. The reward was binary and was obtained when both 
the primary and secondary receivers had SINR exceeding a threshold. Nasir and Guo 
[21] developed deep reinforcement learning for a distributively executed dynamic power 
allocation for multiple users. The transmitter collected delayed CSI and information 
of the interferer and interfered sets from several neighbors and adapted its transmis-
sion power accordingly. A centralized network trainer was used. Each user took action 
from a discrete power level set to maximize a weighted sum-rate utility. Zhang et al. [22] 
used deep reinforcement learning for power control of the secondary user to share the 
spectrum with the primary user. The learning was based on the asynchronous advantage 
actor critic (A3C) and distributed proximal policy optimization (DPPO) methods. A set 
of spatially distributed wireless sensors obtained the received signal strength and sent 
the information to the secondary user. Multiple secondary users learned power control 
policy simultaneously. The transmission power level was discrete. The objective was to 
achieve spectrum sharing by guaranteeing the received SINR of the primary and sec-
ondary users. Meng et  al. [23] considered the dynamic downlink power control prob-
lem to maximize the sum rate in multi-user wireless cellular networks. It was centralized 
dynamic power allocation in a multi-user cellular network. Multi-agent deep reinforce-
ment learning was used with centralized training and distributed execution. Imple-
mented algorithms included policy-based REINFORCE, value-based deep Q-learning, 
and actor-critic deep deterministic policy gradient (DDPG) algorithms.

For the joint channel selection and power control problem, Ye et  al. [24] used deep 
reinforcement learning for decentralized resource allocation in unicast and broad-
cast vehicular communications. Each vehicle-to-vehicle (V2V) link was an agent that 
observed the state that included the instantaneous CSI of the V2V links and the vehi-
cle-to-infrastructure (V2I) links, previous interference information, and previous sub-
channel selections of the neighbors. The action was to select the sub-channel and power 
level for transmission, and there were three selectable levels of transmission power. 
The objective was to increase the capacity of the V2I and V2V links while meeting the 
latency constraints of the V2V communications. Liang et al. [25] developed multi-agent 
reinforcement learning with a fingerprint-based DQN for spectrum and power alloca-
tion in vehicular networks. With inaccurate CSI, the agents cooperated and made dis-
tributed spectrum access decisions to improve the sum capacity of V2I links and the 
payload delivery rate of V2V links. It was centralized learning and distributed execution. 
The agent action was to select spectrum sub-bands and discrete transmission power lev-
els. The selectable power levels were limited to four levels, thus a low-dimensional dis-
crete action space. Xu et al. [26] used multi-agent reinforcement learning with DDPG for 
resource allocation in vehicular communications. The resource allocation problem was 
formulated as a decentralized discrete-time finite-state Markov decision process. The 
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state of each V2V communication included the local channel information and interfer-
ence channel information. The V2V agent learned both frequency spectrum allocation 
and transmission power control to maximize the sum rate of V2I communications and 
guarantee the latency and reliability of V2V communications. The transmission power 
level was from a continuous action space, but each V2V pair could not multiplex more 
than one uplink spectrum channel  at a time. Li and Guo [27] used multi-agent actor-
critic and neighbor-agent actor-critic frameworks of deep reinforcement learning for 
resource allocation in D2D underlay communications. The training was centralized with 
shared global historical states, actions, and policies or neighbor users’ historical infor-
mation. The execution was distributed. Each D2D pair’s action was to select the resource 
block and the discrete-valued transmission power. The objective was to improve the sum 
rate of the D2D links while ensuring the communication quality of the cellular users. Tan 
et al. [28] used distributed deep reinforcement learning for joint channel selection and 
power control in overlay D2D networks. The state included the received signal power, 
the received interference plus noise, and the outdated CSI. Each D2D pair learned the 
correlation patterns by analyzing local information and partial outdated non-local infor-
mation. It then inferred global network information to optimize channel selection and 
transmission power. Each D2D pair chose at most one channel to transmit at a time, and 
the selectable transmission power was discretized into multiple levels. Song et al. [29] 
used deep Q-learning with echo state networks for spectrum management that coor-
dinated interference between secondary users and suppressed interference for primary 
users. The secondary users had interference information feedback from the primary 
users but no CSI. The transmission power had discretized levels. The user action was 
the three-level (increase, decrease, no change) adjustment of the power level. Yang et al. 
[30] used a distributed coordinated multi-agent dueling DQN for resource management 
in two-tier heterogeneous networks. Each cell selected its joint device association, spec-
trum allocation, and power allocation based on locally observed information including 
current CSI. The objective was to maximize the network capacity while guaranteeing the 
quality-of-service (QoS) requirements of mobile devices.

3 � System model and problem formulation
In a wireless communication network, the primary users of the spectrum are the 
licensed users of N frequency channels. For dynamic spectrum access, when a frequency 
channel is idle with no communication usage by the primary users, the secondary users 
of the spectrum are allowed to access the channel. For dynamic spectrum sharing, the 
secondary users can transmit on a frequency channel as long as the interference at the 
primary user receiver is below a threshold. The secondary users are the major players of 
dynamic spectrum access and sharing. They intend to adapt to the channel usage pattern 
of the primary users to avoid channel conflicts with the licensed spectrum users.

3.1 � Channel usage

The primary users use the frequency channels of the spectrum according to a chan-
nel usage and switching pattern. For ease of processing, we divide the time into equal 
intervals. During each time slot, the state of channel usage is represented by a vector 
x = [x1, x2, . . . , xN ]

T . In this vector, xi is the state of the ith frequency channel, where 
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xi = 1 indicates that the channel is available and xi = −1 indicates that the channel is 
occupied. In the next time slot, the channel usage may switch to another state.

The secondary users can transmit on these frequency channels. If the channel is 
currently occupied by the primary user and the secondary user’s transmission causes 
excessive interference to the primary user receiver, a warning is issued to indicate 
channel conflict. The warning signals of channel conflict can be sent through auxiliary 
channels. The secondary users receive the conflict warnings and store the history of 
channel conflicts in their experience databases. Through this process, the secondary 
users can observe the state of channel usage. It should be noted that the observa-
tion is partial. If no secondary users are transmitting on a particular frequency chan-
nel, the current channel state is ambiguous to the secondary users. In addition, if the 
interference to the primary user receiver is tolerable, no warning will be issued.

3.2 � Transmission problem of secondary users

There are K secondary users of the spectrum who want to transmit on the N fre-
quency channels. Suppose that the nth frequency channel ( n ∈ N = {1, 2, . . . ,N } ) is 
free from primary usage. If multiple secondary users transmit on the same channel, 
they interfere with each other. The kth secondary user ( k ∈ K = {1, 2, . . . ,K } ) trans-
mits on the nth channel. Its receiver can measure the received SINR on the nth chan-
nel as

where pk ,n and pl,n are the transmission power of the kth secondary user and the inter-
fering secondary users on the nth frequency channel, respectively. |hkk ,n| and |hkl,n| are 
the channel gains of the nth frequency channel between the kth transmitter and the kth 
receiver and between the lth transmitter and the kth receiver, respectively. The channel 
gains {|h|} are of the secondary users and assumed time-invariant but unknown. W is the 
bandwidth of each frequency channel and N0 is the single-sided noise spectral density.

The kth secondary user may transmit on multiple frequency channels. Therefore, its 
information rate in bits per second per hertz (bit/s/Hz) is given by

The kth secondary user adjusts the transmission power {pk ,n}n∈N  to maximize its 
information rate. Each secondary user has a transmission power limit P such that 
∑

n∈N pk ,n ≤ P . If the kth secondary user does not transmit on the n′ th frequency chan-
nel, it sets pk ,n′ = 0 . Therefore, the transmission design includes both frequency channel 
selection and transmission power allocation.

If the kth secondary user transmits on the mth frequency channel ( m ∈ N  ) that 
conflicts with any primary user, the primary user will issue a warning about the mth 

(1)SINRk ,n =
|hkk ,n|

2pk ,n
∑

l∈K\k |hkl,n|
2pl,n +WN0

(2)

qk =

N
∑

n=1

log2(1+ SINRk ,n)

=

N
∑

n=1

log2

(

1+
|hkk ,n|

2pk ,n
∑

l∈K\k |hkl,n|
2pl,n +WN0

)

.
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channel. After receiving the warning signal, the secondary user invalidates the com-
munication effort on the mth channel by setting SINRk ,m = 0 at the receiver. This 
effectively eliminates the contribution to the information rate qk that is attributed to 
the transmission on the mth channel.

The transmission problem of the kth secondary user can be formulated as

where M ( M ⊆ N  ) is the set of indexes of frequency channels that are occupied by the 
primary users.

In the case of spectrum sharing, when the primary user experiences excessive chan-
nel interference from the secondary users, it will issue a warning about that channel. 
Otherwise, the kth secondary user receives no warning and considers the transmission 
successful on that channel. It measures the received SINR and calculates the information 
rate. In this case, the SINR on the nth frequency channel is modified as

where In is the interference from the primary user’s transmission on the nth frequency 
channel. The transmission problem of the kth secondary user is modified as

where pRm is the interference power on the mth frequency channel received by the pri-
mary user and Ŵ is the threshold. When the interference power exceeds the threshold, a 
warning signal of the mth channel is issued.

Problems (3) and (5) cannot be solved by optimization methods because 

1	 The secondary user does not know the channel usage and switching pattern of the 
primary users. That is, set M and how it changes are unknown.

2	 The secondary user does not know the channel gains {|h|} that are in the expressions 
of {SINRk ,n} and in the information rate qk as revealed in (2).

3	 The secondary user does not know the interference from the primary user’s trans-
mission In that are in the expressions of {SINRk ,n} in (4).

The secondary users dynamically adjust transmission power to maximize the informa-
tion rate. At the same time, the secondary users adapt to avoid channel conflicts with 
the primary users. In the case of dynamic spectrum access, we want pRm = 0,m ∈ M . In 
the case of dynamic spectrum sharing, we want pRm ≤ Ŵ,m ∈ M . To achieve this goal, 
we develop a spectrum access and sharing method that is based on deep reinforcement 
learning for the secondary users.

(3)
maximize
{pk ,n}n∈N

qk

subject to
∑

n∈N pk ,n ≤ P
SINRk ,m = 0, m ∈ M

(4)SINRk ,n =
|hkk ,n|

2pk ,n
∑

l∈K\k |hkl,n|
2pl,n + In +WN0

(5)

maximize
{pk ,n}n∈N

qk

subject to
∑

n∈N pk ,n ≤ P

SINRk ,m = 0, m ∈ M & pRm > Ŵ
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4 � Dynamic spectrum access and sharing through reinforcement learning
The secondary users apply reinforcement learning algorithms to adapt to the wire-
less communication environment. Each secondary user is an agent. In the following, 
we study the kth secondary user as a specific agent and omit the subscript k for clarity. 
In reinforcement learning, the agent observes the system state at each time slot, takes 
action, and receives a reward.

4.1 � State and observation

The agent obtains knowledge about the state of channel usage through observation. If 
any secondary user transmits on a frequency channel that conflicts with the primary 
user, the agent receives the warning and marks the channel as occupied with “ −1 ”. If 
the agent transmits and receives the warning of the channel, it sets the received SINR 
to zero when calculating the information rate. The warning may be caused by other 
secondary user’s transmission on the channel. If there is no warning of the channel, 
and the agent successfully transmits on the channel, the agent observes that the chan-
nel is available and marks it with “1”. However, if there is no warning of the channel 
and the agent does not transmit on that channel, the agent is ambiguous about the 
channel usage and leaves it as “0.” Therefore, the observation of the primary user’s 
usage of a frequency channel is ternary from {−1, 0, 1} . The agent’s observation of the 
state of channel usage is partial.

To capture the pattern of channel usage and switching, the agent expands the observa-
tion space to include what was observed in the previous T0 time slots. At time slot t, the 
agent has the observation of the system state across T0 consecutive time slots. It is given 
by

where x̂ is the observation of the state vector, whose elements are ternary from {−1, 0, 1}.
The system state is the channel occupancy by the primary users. It is independent of 

the communication behavior of the secondary users. However, the agent’s observation of 
the system state can be affected by other secondary users’ transmission.

4.2 � Action

The variables of optimization problems (3) and (5) are the secondary user’s transmission 
power on the frequency channels. Likewise, the action of the agent at time slot t is the 
transmission power as

where pn,t is the agent’s transmission power on the nth frequency channel. The action 
is continuous-valued. It satisfies the condition that 

∑N
n=1 pn,t ≤ P , where P is the trans-

mission power limit. If the agent does not transmit on the n′ th frequency channel, it is 
simply expressed as pn′,t = 0.

The agent tends to transmit at full power on available frequency channels to maximize 
the information rate, that is, 

∑N
n=1 pn,t = P . An exception is when the agent expects 

(6)ot =
{

x̂t−T0 , x̂t−T0+1, . . . , x̂t−1

}

(7)at = {pn,t}n∈N
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no available channel in the current time slot. In this case, the agent does not transmit 
resulting 

∑N
n=1 pn,t = 0.

4.3 � Reward

Reward design is crucial for reinforcement learning to make the learning algorithm a 
suitable replacement for optimization problems (3) and (5). At time slot t, the agent 
takes action at and gets reward rt that is given by

where qt is the information rate defined in (2) for the agent in time slot t. The larger 
the information rate, the greater the reward. The second term in (8) is the penalty due 
to conflict with the primary users. Mt is the set of indexes of frequency channels on 
which the secondary transmission causes conflicts with the primary user’s current usage. 
The penalty is effective when the agent receives the channel warning while transmit-
ting on that channel (nonzero pm,t ). The more transmission power the agent uses on the 
conflicting channels, the greater the penalty. β is a scalar that strikes a balance between 
maximizing the information rate and minimizing the channel conflict with the primary 
users.

Here, we circumvent the problem that involves the received interference power pRm at 
the primary users as in (5). It is impractical for the agent (secondary user) to acquire pRm . 
The only clue it has is the primary users’ warning when pRm > Ŵ . In the reward design, 
we transfer the problem of received interference power at the primary users to the pen-
alty on the transmission power pm,t at the secondary user.

High rewards encourage the agent to allocate transmission power on frequency chan-
nels that maximize the information rate. At the same time, the penalty term gives the 
agent an incentive to avoid channel conflicts with the primary users. With a large value 
of β , the agent strives to transmit on channels that do not conflict with the primary 
users. In practice, β is a hyperparameter that can be tuned empirically.

The goal of reinforcement learning is to find the optimal policy. Following this policy, 
the agent will take the best action when observing the system state. With the roll-out of 
the “state, action, reward, next_state” trajectory, the optimal policy will maximize the 
cumulative discounted reward, which is given by

where γ is the discount rate and T is the time horizon.
In dynamic spectrum access and sharing, the secondary user’s actions do not affect 

which frequency channels the primary users will occupy in the future. It may affect the 
way the secondary user probes the frequency channels by transmitting on specific chan-
nels. The impact of the current action on future rewards is limited. Therefore, in the 
algorithm implementation, we use a moderate γ , e.g., γ = 0.5.

(8)rt = qt − β
∑

m∈Mt

pm,t

(9)Rt =

T
∑

τ=t

γ (τ−t)rτ , 0 ≤ γ ≤ 1
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5 � Actor‑critic deep reinforcement learning for dynamic spectrum access 
and sharing

When the secondary user applies reinforcement learning for dynamic spectrum access 
and sharing, the state space of the reinforcement learning is large. Therefore, we use 
deep reinforcement learning algorithms with deep Q-networks. In addition, the second-
ary user’s action is to adjust the levels of transmission power. The continuous-valued 
actions lead to a large action space of the reinforcement learning. This prompts us to 
adopt deep deterministic policy gradient (DDPG) [7, 8] and twin delayed deep determin-
istic policy gradient (TD3) [10] algorithms for dynamic spectrum access and sharing.

5.1 � Actor‑critic deep deterministic policy gradient algorithm

The DDPG algorithm is an actor-critic algorithm that integrates the deep Q-network 
with the deterministic policy gradient algorithm. It can concurrently learn a Q-func-
tion and a policy in a high-dimensional and continuous action space [23, 26, 31]. The 
algorithm maintains an actor function to deterministically map state observations to 
actions and maintains a critic function to estimate the Q-values of action-state pairs. 
The actor-critic architecture takes advantage of value-based and policy-based learn-
ing methods.

The critic estimates the action-value function, i.e., the Q-function. The Q-function 
describes the expected cumulative discounted reward after taking an action at on obser-
vation ot following policy π . That is

where Eπ is the expectation with the states taken in the state space (equivalently, the 
observations taken in the observation space) and the actions thereafter following policy 
π . In reinforcement learning, the Q-function is expressed recursively according to the 
Bellman equation

The Q-function Qπ (ot , at) can be approximated by a Q-network parameterized with θQ . 
That is

A deep neural network implements the Q-network. Its details are discussed in Sect. 5.3.
The actor updates the policy distribution in the direction suggested by the critic with 

policy gradients. Policy gradient methods are used in model-free reinforcement learn-
ing, because the state transitions are unknown to the agent. When the policy is deter-
ministic, the actor directly maps observation ot to action at . This can be approximated 
by a policy network parameterized with θµ . That is

A deep neural network implements the policy network. Its details are discussed in 
Sect. 5.3.

(10)Qπ (ot , at) = Eπ [Rt | ot , at ]

(11)Qπ (ot , at) = E[r(ot , at)+ γEπ [Q
π (ot+1, at+1)]].

(12)Q(ot , at | θ
Q) = Qπ (ot , at).

(13)at = µ(ot | θ
µ).
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The DDPG algorithm also maintains a target Q-network ( Q′ ) and a target policy net-
work ( µ′ ). They are the time-delayed copies of the Q-network and the policy network, 
respectively. The target Q-network is parameterized with θQ′ , and the target policy net-
work is parameterized with θµ′ . Figure 1 shows the actor-critic architecture of the algo-
rithm that includes the four networks, i.e., a Q-network, a deterministic policy network, 
a target Q-network, and a target policy network.

In the neural-network implementation, the updated Q-value ( ̃Q ) according to the Bell-
man equation (11) is given by

The Q-network (Q) is updated by minimizing the temporal-difference (TD) loss as

where 
∑

 denotes the average sum over a mini-batch.
With the actor’s policy function µ , the objective is to maximize the expected return, i.e., 

the expected cumulative discounted reward, as

Because the action space is continuous, the function Q(ot , a) is differentiable with 
respect to the action argument a. As the policy function is differentiable, we can apply 
the chain rule and take the derivative of the objective function with respect to the policy 
parameter. Therefore, the policy network ( µ ) is updated by using the sampled policy gra-
dient as

(14)Q̃t = r(ot , at)+ γQ′(ot+1,µ
′(ot+1 | θ

µ′
) | θQ

′
).

(15)min L =
∑

[

Q(ot , at | θ
Q)− Q̃t

]2

(16)max J = E
[

Q(ot , a)|a=µ(ot )

]

.

Fig. 1  Actor-critic architecture of deep deterministic policy gradient algorithm
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The two target networks slowly track the learned parameters of the Q-network and the 
policy network. The updates follow the soft-replacement rules of Polyak averaging as

where ρ(0 < ρ ≪ 1 ) controls the update rate to be slow to improve the stability of 
learning.

5.2 � Twin delayed deep deterministic policy gradient algorithm

The DDPG algorithm can be fragile when the learned Q-function starts to overestimate 
the Q-value. The algorithm will exploit the errors in the Q-function, which can trigger 
policy breaking. The TD3 algorithm extends the DDPG algorithm to address this issue.

The TD3 algorithm uses two separate Q-networks in the critic (shown in Fig.  2). It 
learns two Q-functions and uses the smaller of the two Q-values to form the target in the 
Bellman error loss function. The low value provides a more stable approximation, thus 
improving the algorithm stability.

The TD3 algorithm delays the update of the policy network. In other words, it updates 
the policy network less frequently than the Q-network. With the interaction between 
the actor (policy network) and the critic (Q-network), errors may accumulate, leading to 
a decline in learning performance. The delayed update of the policy network allows the 
Q-network to become more stable with smaller errors before the value estimate is used 
to update the policy network. The value estimate with lower variance can help produce a 
better policy.

Deterministic policy algorithms tend to generate target Q-values with high variance 
when updating the critic. This is due to overfitting the spikes in the value estimate. The 
TD3 algorithm handles this by adding random noise to the target action in the actor. The 
range of noise is clipped to keep the target action close to the ideal one. By adding noise 

(17)∇θµ J ≈
∑

∇aQ(ot , a | θQ)|a=µ(ot )∇θµµ(ot | θ
µ).

(18)
θQ

′
← ρθQ + (1− ρ)θQ

′

θµ
′
← ρθµ + (1− ρ)θµ

′

Fig. 2  Part of structure of twin delayed deep deterministic policy gradient algorithm



Page 13 of 25Dong et al. J Wireless Com Network         (2022) 2022:48 	

to the target action, the Q-value is smoothed out with changes in the action. In return, 
the policy is less likely to be affected by the Q-function errors.

5.3 � Deep neural networks for actor and critic

Deep neural networks are used as function approximators in the actor and the critic. 
Figure  3 shows the network architecture for the policy network and the target policy 
network of the actor. The state observation ot with dimension N × T0 is the input of the 
network. The input passes through a one-dimensional (1D) convolutional layer. The con-
volution filter covers the entire frequency span and part of the time span, i.e., the kernel 
size is less than T0 . There are 128 such filters, so the output depth of this layer is 128. 
The layer is followed by another 1D convolutional layer. The convolution filter covers 
the entire time span. These layers excavate and exploit the correlation of the input data 
in both frequency and time. In the time domain, an LSTM layer could be an alternative 
[32]. However, the LSTM layer has higher sequential operation complexity. Using the 1D 
convolutional layer in the time domain instead of the LSTM results in similar learning 
performance with less complexity.

Next, the output of the layer is flattened and consecutively passes through two fully 
connected layers, each with 128 nodes. The activation functions of these layers are rec-
tified linear unit (ReLU). After that, the data pass through two fully connected layers 
in parallel. The first one has N output nodes and the activation function is softmax. It 
gives the distribution of the transmission power on the N frequency channels. The sec-
ond one has one output node and the activation function is sigmoid. It handles the situa-
tion where the agent expects no available channel and decides not to transmit at all. The 
network output is the product of these two layer-outputs, multiplied by the transmission 

Fig. 3  Neural-network architecture of the policy network

Fig. 4  Neural-network architecture of the Q-network
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power limit P. This ensures that the agent’s total transmission power on the frequency 
channels never exceeds the power limit P. The policy network is trained by maximizing 
the expected cumulative discounted reward, i.e., the Q-function. The parameters of the 
target policy network are updated by Polyak averaging the policy-network parameters.

Figure  4 shows the network architecture for the Q-network and the target Q-net-
work of the critic. Similar to the policy network, the state observation ot is input to 
the Q-network that consecutively passes through two 1D convolutional layers. The 
output of the layer is flattened and passes through a fully connected layer with 128 
nodes. At this layer, the data are concatenated with the action at (transmission power 
on N channels) that comes from the actor. The concatenated data go through another 
fully connected layer with 128 nodes. The activation functions of these fully con-
nected layers are ReLU. Finally, the data pass through a fully connected layer with one 
output node. No activation function is used. It gives the Q-value. The Q-network is 
trained by minimizing the temporal-difference loss of the Q-value. For the training, 
the critic needs mini-batches of the tuples (observation, action, reward, next observa-
tion). The parameters of the target Q-network are updated by Polyak averaging the 
Q-network parameters.

5.4 � Neural network training

The neural networks of the DDPG and the TD3 algorithms are trained to produce a 
deterministic policy. The algorithms are off-policy algorithms. At training time, we add 
noise to the action to perform exploration. With a continuous action space, the explora-
tion is given by

where w is the noise sampled from a noise process. At the beginning of training, the 
variance of the noise is large so that the agent can try very different actions to establish 
a useful learning experience. When the neural network learns better and better during 
training, the noise variance will gradually decrease.

In dynamic spectrum access and sharing, the action is the transmission power allo-
cated on the frequency channels at = {pn,t}n∈N  . The agent explores new actions by add-
ing uncorrelated zero-mean Gaussian noise {wn}n∈N  to the power levels. That is

where p̂n,t is the power level from the policy network. The operation max[·, 0] is to 
ensure that the transmission power is non-negative. If the power levels obtained through 
exploration exceed the transmission power limit P, they will be trimmed down accord-
ing to

To improve exploration, in the beginning, the agent can take actions that are randomly 
sampled from a uniform distribution over valid actions. During regular training, the 
agent gradually reduces the variance of the noise wn that is added to p̂n,t . With endless 

(19)at = µ(ot | θ
µ)+ w

(20)pn,t = max[p̂n,t + wn, 0], ∀n ∈ N

(21)
P

∑

n∈N pn,t
pn,t ⇒ pn,t , ∀n ∈ N .
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training as in reinforcement learning, exploration eventually fades away and the new 
action follows the deterministic policy.

Experience replay is applied in the learning algorithms. The algorithms use a replay 
buffer to store the experience tuples (observation, action, reward, next observation). The 
replay buffer is large enough to contain a wide range of previous experiences. When the 
replay buffer is full, the oldest tuples are pushed out. When training the neural networks, 
we randomly extract mini-batches of experience from the replay buffer to update the 
network parameters. Experience replay breaks the correlation in successive updates, 
thus stabilizing learning.

6 � Multi‑agent deep reinforcement learning for multiple secondary users
6.1 � Cooperative tasks of secondary users for dynamic spectrum access and sharing

When K secondary users access the spectrum simultaneously, we encounter a multi-
agent learning problem. The agents are the secondary users who observe the system 
state of channel usage by receiving conflict warnings from the primary users. Under the 
premise of avoiding transmission conflicts with the primary users, the agents selectively 
transmit on the available frequency channels so that they do not interfere with each 
other excessively.

At time slot t, the kth agent ( k ∈ K ) adjusts the transmission power {pk ,n}n∈N  to boost 
the information rate qk given in (2). Multiple agents adjust the transmission power in a 
distributed manner, but the goal is to maximize the sum information rate of the second-
ary users. The transmission problem of the K agents can be formulated as

where M(M ⊆ N ) is the set of indexes of frequency channels that are currently in con-
flict with the primary users.

In a cooperative game, the agents have the same reward function and they learn to 
maximize the common discounted return. The agents use deep reinforcement learning 
to deal with the transmission problem (22). Each agent processes its own learning, but 
the agents share a unified reward to encourage cooperation. The unified reward com-
bines the individual rewards of the agents. It is given by

where qk ,t is the information rate of the kth agent at time slot t, which depends on the 
received SINRs on the available frequency channels. Set Mt indicates the conflicting fre-
quency channels at time slot t. The kth agent transmits on the mth frequency channel 
with power pk ,m,t.

When the K agents transmit at time slot t with power {pk ,n,t}k∈K,n∈N  , they measure 
the received SINRs and listen to warnings from the primary users. These warnings can 
be triggered by any agent’s transmission on the channels that are in conflict with the 
primary users. Each agent communicates its detected set Mk ,t to others. By adopting 
the union of sets {Mk ,t}k∈K reported by the agents, i.e., Mt =

⋃

k∈K Mk ,t , the agents 

(22)
maximize
{pk ,n}k∈K,n∈N

∑

k∈K qk

subject to
∑

n∈N pk ,n ≤ P, ∀k
SINRk ,m = 0, m ∈ M, ∀k

(23)rt =
∑

k∈K

rk ,t =
∑

k∈K

qk ,t − β
∑

k∈K

∑

m∈Mt

pk ,m,t
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can get a more accurate set Mt for the unified reward. To some extent, this enhances the 
detection of primary spectrum usage through secondary user cooperation [33, 34]. Dif-
ferent agents may probe different frequency channels. Multiple agents monitor warnings 
together. The kth agent sets the received SINR to zero on conflicting channels and calcu-
lates the information rate qk ,t according to (2) and the individual reward rk ,t according to 
(8). Then, the agent exchanges the value of the individual reward with others. In the end, 
each agent obtains the unified reward rt =

∑

k∈K rk ,t.
Multiple agents interact with the communication environment and make strategic 

decisions that adapt to the spectrum and other agents’ activities. Each agent uses an 
actor-critic deep reinforcement learning mechanism to find a policy that tends to max-
imize the common cumulative discounted reward. According to this policy, the agent 
specifies the frequency channels it uses and the transmission power levels on these 
channels. Algorithm 1 summarizes the distributed learning algorithm with multi-agent 
cooperation. In Algorithm 1, we describe the learning process of the kth agent.

6.2 � Coordination in multi‑agent deep reinforcement learning

When considering multi-user dynamic spectrum access and sharing as cooperative 
multi-agent deep reinforcement learning, we specify a unified reward, hence a common 
cumulative discounted reward. In a distributed approach, each agent is an independent 
decision-maker. The agents have local Q-functions. Compared with the ideal centralized 
method, the distributedly generated policies are suboptimal.

Besides the rewards, the agents can exchange other types of information for different 
degrees of coordination. The agents can exchange both rewards and state observations 
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with each other. The signaling overhead in the secondary user network is moderate 
because the reward is scalar and the state observation is ternary. The individual state 
observations {ok ,t}k∈K may be partial observation, i.e., they may contain many zero ele-
ments. The aggregated state observation ot is the consensus of the individual state obser-
vations such that the number of zero elements is reduced. Referring to Figs. 3 and 4, we 
see that the aggregated state observation ot can be the same input to the actor and the 
critic of every agent. Therefore, the agents can better learn the temporal and spectral 
correlations of the spectrum.

The agents learn simultaneously in multi-agent deep reinforcement learning. Each 
agent can further explore and adapt to the behaviors of other agents. The agents’ choices 
of actions must be consistent with each other to achieve the desired outcome. Toward 
this end, the agents can exchange rewards, state observations, and action choices. Refer-
ring to Fig. 4, in the third hidden layer of the Q-network, we concatenate the layer out-
put with action vectors {ak ,t}k∈K not only from this agent’s actor but from other agents’ 
as well. Each agent has a local actor-critic learning mechanism and updates the network 
parameters independently. However, by critiquing the actions taken by all the agents, 
the agent can improve its policy and make the overall result closer to the optimal joint-
action solution of the ideal centralized method.

6.3 � Scalability and stability

The algorithm of multi-agent deep reinforcement learning for dynamic spectrum access 
and sharing has a high degree of scalability. First, each agent exploits actor-critic deep 
reinforcement learning for continuous state-action space. It alleviates the curse of 
dimensionality caused by the exponential growth of discrete state-action space in the 
number of state and action variables. Second, multiple secondary users are autonomous 
agents who learn to deal with spectrum issues independently. Since the agents perform 
deep reinforcement learning in a distributed manner, they do not encounter a joint 
state-action space like that in a centralized approach. Therefore, the learning algorithm 
complexity does not scale with the increase in the number of agents. There is moder-
ate signaling overhead among the agents. As the degree of agent coordination increases, 
signaling overhead will increase. Third, when one or more agents leave the multi-agent 
system, the remaining agents can continue to operate normally. When new agents are 
inserted into the system, they can quickly join the cooperation of multi-agent reinforce-
ment learning. Therefore, the algorithm is inherently robust.

Non-stationarity appears in multi-agent deep reinforcement learning when all agents 
learn simultaneously [35]. The agents explore the situation by learning the environment 
(the spectrum usage of the primary users) and the behaviors of other agents (the trans-
mission actions of other secondary users). In dynamic spectrum access and sharing, the 
transmission of secondary users will not affect the primary spectrum usage. In other 
words, the behaviors of the agents will not have a significant impact on the environment. 
By learning the statistics of the changing environment, the agents can converge to an 
equilibrium with some stability. At the equilibrium, the secondary users do not transmit 
on some channels that contribute little to the sum information rate but are very likely to 
cause conflict with the primary users. The stability of a multi-agent learning process is 
important because a more stable agent can help other agents learn quickly. The agents 
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then adapt to changes in the environment and each other’s behaviors. A balance of sta-
bility and adaptability can be achieved for good performance.

7 � Experimental methods
We conduct experiments using a wireless communication network in which primary 
and secondary users of the spectrum share multiple frequency channels. The wireless 
transceivers use the Wireless Open Access Research Platform (WARP) v3 boards with 
the FMC-RF-2X245 modules and the Universal Software Radio Peripheral (USRP) 
X310 and N210 boards with the CBX daughterboards. Each secondary user’s wire-
less transceiver is connected to a GPU-accelerated computer. The GPUs are NVIDIA 
GeForce RTX 2080 Ti supported by the CUDA toolkit. Learning algorithms are pro-
grammed using Python/Tensorflow and executed on the dedicated computers. An 
N9030A PXA Signal Analyzer is used to measure the received SINR. Figure 5 shows 
the experiment setup in the laboratory.

In the experiments, each secondary user has a transmission power limit of 
P = 30 mW (14.77 dBm). The transmission power can be allocated across N = 14 fre-
quency channels in the 2.4  GHz range. The channels are spaced 5  MHz apart from 
each other. The average channel gain ¯|h| of the secondary users is measured at about 
−61.29 dB. The receiver noise in one frequency channel is WN0 = 1 nW ( −60 dBm). 
Channel usage by the primary users is arbitrary, but the channel usage and switch-
ing pattern is periodic over the long term. A channel conflict warning is issued when 
the primary user experiences excessive interference from the secondary users. In the 
experiments, this is usually caused by the secondary users transmitting more than 
100 µ W ( −10  dBm) in any frequency channel occupied by the primary user. The 
secondary users do not know the primary users’ channel usage and switching pat-
tern. They also do not know the channel gains {|h|} of user and interference channels 
among the secondary users.

The secondary users implement the twin delayed deep deterministic policy gradi-
ent (TD3) algorithm to dynamically access and share the spectrum. In Table 1, we list 
the parameters of the TD3 algorithm. The discount rate of the cumulative discounted 

Fig. 5  Experiment setup in the laboratory
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reward is γ = 0.5 . The learning rate of the actor is 0.0001, and the learning rate of the 
critic is 0.0003. The lower learning rate of the actor makes the actor converge slower. 
The update parameter of the target networks is ρ = 0.001 . The TD3 algorithm takes 
one policy update for every 10 Q-function updates. The experience replay buffer can 
store 100,000 tuples of data (over 100,000 time slots). The size of a mini-batch is 128 
tuples. The state observation spans T0 = 32 time slots, and the first 1D convolutional 
layer in the policy network and the Q-network has a kernel size of 24. The reward 
coefficient β that balances maximizing information rate and minimizing transmission 
conflict is set empirically at 0.05  (bit/s/Hz)/mW. We implement the exploration of 
the TD3 algorithm by adding uncorrelated zero-mean Gaussian noise to the  deter-
ministic actions. The standard deviation of the noise starts at σw = 10 mW. The noise 
standard deviation decreases during training with σw,t+1 = 0.99995σw,t .

The secondary user first randomly selects the frequency channels and transmits within 
the power limit. It observes the system state, takes random actions at time slots, and 
calculates rewards to fill the replay buffer. After the replay buffer is full, the secondary 
user iterates the TD3 algorithm to adjust its transmission power levels on the frequency 
channels. It continuously collects new data and updates the replay buffer. The secondary 
user samples mini-batches from the replay buffer and learns to alleviate channel conflict 
with the primary users while increasing its information rate.

8 � Results and discussion
Figures 6, 7, and 8 show the results when only one secondary user (User 1, User 2, and 
User 3, respectively) is active in the wireless communication network. Each figure shows 
the number of channels that conflict with the primary users and the secondary user’s 
information rate over learning iterations in the number of time slots. The curves in the 
figures are the moving average of 1000 data points. The performance of dynamic spec-
trum access and sharing is compared with the baseline case. In the baseline case, the 
secondary user is unaware of the channel usage status and distributes its transmission 
power evenly over the frequency channels. The information rate is also compared with 
the rate under ideal conditions when the secondary user is fully aware of channel avail-
ability and channel gains. The secondary user transmits on the available channels with 
the “water-filling” power allocation to maximize its information rate. The results show 

Table 1  Parameters of the TD3 algorithm implemented by the secondary user

Discount rate γ of cumulative reward 0.5

Learning rate of actor 0.0001

Learning rate of critic 0.0003

Update parameter of target networks ρ 0.001

TD3 delayed update of actor 1 actor update for 10 
critic updates

Experience replay buffer size 100,000

Mini-batch size 128

State observation time span T0 32 time slots

Reward coefficient β 0.05 (bit/s/Hz) / mW

Exploration noise w added to the action, decreasing during training Start at σw = 10 mW
σw ,t+1 = 0.99995σw ,t
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that the secondary user can learn an almost optimal policy for dynamic spectrum access 
and sharing using the TD3 algorithm. Over time, the channel conflict with the primary 
users can be avoided, and the secondary user’s information rate approaches that under 
the ideal conditions.

In the experiments, we also test the scenario where K = 3 secondary users are active 
simultaneously in the wireless communication network. They access and share the 
spectrum with the primary users and aim to alleviate channel conflict while maximiz-
ing their sum information rate. They implement the multi-agent deep reinforcement 
learning with the TD3 algorithm. The agents coordinate by exchanging the informa-
tion of rewards, the information of rewards and state observations, or the information 
of rewards, state observations, and actions. Figure 9 shows the number of channels 
that conflict with the primary users as the secondary users iterate the multi-agent 
learning algorithm over time in the number of time slots. As the degree of coordina-
tion increases, the agents can adapt faster to the spectrum environment and avoid 
most channel conflicts.

Figure  10 compares the sum information rate achieved through the proposed 
dynamic spectrum access and sharing with two baseline cases. In the first baseline 
case, the secondary users do not know channel availability or channel gains. Never-
theless, they can cooperate to be assigned exclusive frequency channels and do not 
interfere with each other. Each secondary user distributes transmission power evenly 

Fig. 6  Secondary User 1 is active alone in the secondary user network. It performs dynamic spectrum access 
and sharing using the TD3 algorithm. Top: The number of frequency channels that conflict with the primary 
users over time slots of training iterations. Bottom: The information rate of the secondary user over time slots 
of training iterations
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on its exclusive channels. In the second baseline case, each secondary user distributes 
power evenly on all frequency channels. In the figure, we also plot the sum infor-
mation rate that can be achieved under ideal conditions as an upper bound. In the 
ideal situation, the secondary users are fully aware of the spectrum environment and 
can transmit on available frequency channels. They also perfectly know the user and 
interference channels among the secondary users and can negotiate the best alloca-
tion of the available channels. Each secondary user then transmits on the interfer-
ence-free channels with the “watering-filling” power distribution. As revealed in the 
figure, through multi-agent deep reinforcement learning, the secondary users can 
obtain a sum information rate that exceeds the benchmark of the baseline cases. As 
the degree of coordination increases, the achieved sum information rate gets closer to 
the upper bound.

9 � Conclusion
A practical method for dynamic spectrum access and sharing is proposed and experimen-
tally verified in a wireless communication network. The secondary users of the spectrum 
implement deep reinforcement learning algorithms to avoid or reduce interference to the 
primary users while maximizing the secondary user’s information rate. A framework of 
actor-critic deep deterministic policy gradient algorithm is tailored for the task, and the 

Fig. 7  Secondary User 2 is active alone in the secondary user network. It performs dynamic spectrum access 
and sharing using the TD3 algorithm. Top: The number of frequency channels that conflict with the primary 
users over time slots of training iterations. Bottom: The information rate of the secondary user over time slots 
of training iterations
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Fig. 8  Secondary User 3 is active alone in the secondary user network. It performs dynamic spectrum access 
and sharing using the TD3 algorithm. Top: The number of frequency channels that conflict with the primary 
users over time slots of training iterations. Bottom: The information rate of the secondary user over time slots 
of training iterations

Fig. 9  Three secondary users perform dynamic spectrum access and sharing using multi-agent deep 
reinforcement learning with TD3. Users exchange rewards, exchange rewards and states, or exchange 
rewards, states and actions. The figure shows the number of frequency channels that conflict with the 
primary users over time slots of training iterations



Page 23 of 25Dong et al. J Wireless Com Network         (2022) 2022:48 	

deep neural networks are designed. The secondary users learn the preferred distribution of 
transmission power on the frequency channels through limited interaction with the com-
munication environment. Each secondary user exploits the historical warnings of channel 
conflict and the received SINRs to adapt to rapid switching of channel usage by the primary 
users. Multiple secondary users implement multi-agent deep reinforcement learning with 
various degrees of coordination among the secondary users. The communication overhead 
in the secondary user network is moderate. The algorithms are effective, enabling the sec-
ondary users to quickly establish transmission policies that achieve good spectrum utili-
zation. For future work, we plan to investigate the dynamic spectrum access and sharing 
problem with more random channel usage and switching patterns. The switching of the 
channel usage state, for example, can be modeled as a Markov chain with a state transition 
probability of less than one. Additionally, we plan to investigate the robustness and conver-
gence speed of the TD3 algorithm.
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