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1  Introduction
Digital MIMO systems operate by transmitting a vector of discrete symbols across a 
single-channel use and are a major component of current 5G and envisioned 6G com-
munication systems [1]. Given the prevalent use of error-correcting codes, such as low-
density parity check (LDPC) codes, two core tasks for modems in these systems consist 
in soft bit estimation (also commonly referred to as soft-output MIMO detection, or 
soft detection) and soft bit quantization. Using soft—instead of hard—bit estimates for 
decoding error-correcting codes is known to provide an order of magnitude order in a 
reduction in end-to-end error rates [2], and algorithms that operate on soft bits must 
ensure that they are close as possible to the optimal solution. In this work, our goal is to 
develop learning-aided solutions for two different tasks, handled under the same frame-
work: soft bit estimation and quantization. Starting with soft bit quantization using deep 
learning, we develop a framework that can address the two tasks simultaneously by 
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reusing the information learned during quantization for better supervised training of a 
soft bit estimation algorithm.

Soft bit quantization is required when storing a large number of soft bits for a poten-
tially long duration of time, such as in hybrid automatic repeat request (HARQ) schemes 
[3] or when the soft bits themselves need to be forwarded across wireless environments, 
such as in relay [4] or fronthaul [5] systems. For example, in distributed communica-
tions systems [6], low-resolution soft bit quantization is required whenever relaying or 
feedback is involved, because system capacity represents a bottleneck [7], and soft bits 
must be transmitted without errors, using a low communication overhead. Quantiza-
tion is also required in systems that use the HARQ protocol, where it is beneficial for 
the receiver to store soft bit values from a failed transmission, and use a soft combining 
scheme [8, 9] to boost performance, making storage a potential system bottleneck.

Soft bit estimation in MIMO systems is a challenging practical problem due to the 
exponential complexity of the optimal solution [10] and stringent latency requirements 
in 5G-and-beyond communication systems [11]. For example, given a single-user MIMO 
(SU-MIMO) 5G system operating at sub-6 GHz, the base station could be faced with 
estimating soft bits from as many as thousands of channel uses per data frame [12], each 
of these requiring an expensive algorithm. Near-optimal estimation algorithms are a 
central part of end-to-end performance in coded systems (e.g., that use low-density par-
ity-check (LDPC) codes) [13], with solutions that use machine learning to obtain high-
performance and low latency being an active area of research. Our work builds upon this 
line of research and introduces a deep learning-aided algorithm for near-optimal soft bit 
estimation in moderately sized SU-MIMO systems.

Deep learning methods have emerged as promising candidates for aiding or completely 
replacing signal processing blocks in MIMO communication systems [14, 15]. In this 
work, we focus on the case where deep learning is used on specific functional tasks in 
end-to-end communication systems. These approaches are attractive, as they are mod-
ular and compatible with existing communication protocols. While previous solutions 
have been developed for both tasks, there is currently no solution that addresses soft 
bit quantization in large MIMO systems and that tackles soft bit estimation and quan-
tization in the same framework. Furthermore, the robustness of deep learning-based 
methods is still an open problem in the broader machine learning field [16, 17] and has 
been recognized as an issue in digital communications as well [18, 19]. In this paper, we 
address this research gap and introduce EQ-Net, a data-driven architecture that aims to 
solve the challenges of low-latency quantization and estimation, while still retaining the 
end-to-end system performance of classical approaches under distributional shifts.

1.1 � Related work

1.1.1 � Soft bit quantization

Generally, there are two approaches developed in the prior work regarding soft bit quan-
tization: scalar or vector quantization. In the scalar approach, each soft bit is separately 
quantized, independent of the others, and without considering structure at a channel 
use level. The work in [20] introduces an information-theoretic optimal data-based 
approach for quantizing soft bits from arbitrary distributions, such as corresponding to 
the same bit position in gray-coded digital quadrature amplitude modulation (QAM). 
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This approach also has the advantage that it does not make any assumptions about the 
underlying channel model and an algorithm is given for estimating optimal scalar quan-
tization levels in arbitrary channels. The work in [21] proposes a solution for soft bit 
quantization in relay systems based on maximizing the mutual information between 
two transmitters and one receiver. While both of these approaches are competitive, they 
do not take advantage of redundancy between soft bit estimates derived from the same 
channel use.

A promising research avenue is to consider vector quantization techniques for soft bits 
in MIMO channels. The work in [22] extends the data-driven approach in [23] and pro-
poses a vector extension to a maximum mutual information quantizer, but loses theo-
retical optimality guarantees. The method in [24] introduces a deep learning approach 
that leverages the redundancy between soft bit values corresponding to a single chan-
nel use and achieves excellent quantization results for SISO channels. However, there 
remains the issue of developing a vector quantization method for arbitrary MIMO sce-
narios, which is a major distinction between this paper and all other prior work in terms 
of quantization methods. Finally, prior work does not discuss or exploit the learned rep-
resentations from the quantization task when maximum likelihood (ML) soft bits are 
used for training, which is also a component of EQ-Net.

1.1.2 � Soft bit estimation

There are a broad number of classical (non-learning-based) signal processing algorithms 
that have been developed for soft bit estimation, given that channel decoding using soft 
bit inputs is ubiquitous in practice [2]. A modern survey of MIMO soft bit estimation 
(also called soft-output detection) is presented in [13]. The V-BLAST algorithm [25] uses 
the idea of sequential estimation, with subsequent work leading to zero-forcing with 
successive interference cancelation (ZF-SIC) [26] as an algorithm for efficient detection, 
and the minimum mean square error with successive interference cancelation (MMSE-
SIC) [27] to further improve performance. In these methods, the system is reduced to 
a (regularized) upper triangular form and data symbols are detected in a fixed order. 
Once a symbol is detected, it is assumed to be correct and subtracted from the remain-
ing data streams. This leads to low-complexity, but also low-performance methods, that 
may exhibit error floors. Sphere decoding [28, 29] formulates the detection problem as 
a tree search algorithm and performs a greedy search. In the soft-output version [29], 
multiple candidate solutions are used to estimate log-likelihoods. A drawback of this 
class of algorithms is the need for specialized hardware to accommodate latency budg-
ets in 5G-and-beyond scenarios [30]. To address this, recent work has combined sphere 
decoding with deep learning for search radius and branch prediction [31].

More recently, there has been work in model-based approaches for MIMO detection, 
where differentiable optimization steps are interleaved with deep learning models. The 
work in [32] proposes OAMP-Net2 as a data-based extension to the orthogonal approxi-
mate message passing (OAMP) detection algorithm [33], where step sizes are treated as 
learnable parameters. This method has the advantage of a very small number of learn-
able parameters, but has a relatively large end-to-end latency because of the matrix opera-
tions involved during inference. The work in [34] takes a similar approach, but replaces the 
fixed computations of the OAMP algorithm with fully learnable transforms (i.e., layers of 
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a deep neural network), resulting in competitive results for MIMO soft bit estimation and 
an architecture that can be scaled to high-dimensional scenarios. Finally, the work in [35] 
trains a two-layer deep neural network using a supervised loss directly on the soft bits, in 
single-input single-output (SISO) channels, leveraging that, in this case, a closed-form lin-
ear approximation of the soft bits exists. This is not the case for MIMO detection, where 
single-stage supervised training may encounter convergence issues, as outlined in Sect. 3.2.

1.2 � Contributions

Our contributions in this work are the following: 

1	 We prove lower and upper representation size bounds (Theorems 1 and 2) for the 
ML and MMSE-SIC soft bit estimates in arbitrary MIMO channels. The upper bound 
for ML is proved constructively through a construction that holds for any channel, 
while the lower bound for ML comes from the class of diagonalized MIMO chan-
nels. In practice, we verify that the lower bound for ML can be achieved for arbitrary 
channels and learned using deep neural networks, which becomes a design criterion 
in the proposed approach. For the MMSE-SIC algorithm, we prove that the lower 
bound is achievable in arbitrary channels.

2	 We introduce a methodology for the supervised training of a joint soft bit estimation 
(E) and quantization (Q) algorithm in MIMO scenarios, termed EQ-Net. The pro-
posed approach involves a two-stage training procedure: The first stage trains a deep 
autoencoder for quantization, while the second stage trains an estimation encoder, 
reusing the quantization decoder. We experimentally verify that the two-stage train-
ing algorithm improves convergence and has better end-to-end coded system per-
formance than the single-stage supervised training baseline when using small depth 
(shallow) networks.

3	 We experimentally evaluate end-to-end block error rate performance, inference 
latency and the robustness of EQ-Net in soft bit quantization and estimation. We 
demonstrate competitive results in both tasks simultaneously, under realistic sys-
tem simulations. We compare our method with classical signal processing algo-
rithms, as well as deep learning-based approaches. We obtain gains of up to 20% in 
numerical quantization efficiency and estimation gains of up to 1 dB in end-to-end 
system performance in coded MIMO orthogonal frequency-division multiplexing 
(OFDM) scenarios and demonstrate latency improvements against other deep learn-
ing approaches. Finally, we demonstrate that EQ-Net is robust to inaccurate chan-
nel state information (CSI), different train–test distributions of the channel condi-
tions and distributions of the input in large-scale MIMO scenarios (up to 64 × 64 
SU-MIMO), when evaluated on the quantization task, and is competitive with other 
deep learning methods on the robust estimation task in smaller-sized MIMO sce-
narios of up 4 × 4.
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2 � Methods
2.1 � System model

We assume a narrowband, instantaneous, digital, single-cell uplink MIMO communica-
tion model. This encompasses practical scenarios, such as single-carrier MIMO com-
munication, or an individual subcarrier of a MIMO-OFDM transmission, and is flexible 
enough to model various distributions of the MIMO channel matrix. The communica-
tion model is given by [36, Eq. 7.55]:

where x ∈ C
Nt is a vector of transmitted symbols drawn from a finite, discrete constel-

lation C , and y ∈ C
Nr is a vector of received symbols. Nt and Nr represent the number 

of transmitted and received data streams, respectively, and n ∈ C
Nr is an i.i.d. complex 

Gaussian noise vector with covariance matrix σ 2
n I . For the remainder of this work, 

we deal with spatial multiplexing scenarios, where Nr ≥ Nt and the transmitted data 
streams are assumed to be independent, but an application of our method to transmit 
diversity is possible when considering the effective digital matrix as the product between 
the precoding matrix and the channel matrix. H is the digital channel matrix character-
izing the baseband channel effects between the transmitter and the receiver and includes 
the effects of precoding and beamforming. In practice, C is the set of symbols in a QAM 
constellation with 2K  elements, where K is the modulation order and represents the 
number of information bits transmitted in each of the Nt data streams.

The kth log-likelihood ratio of the ith transmitted symbol is defined as [20]:

For the remainder of this work, we use the notion of soft bits, which are closely related 
to the log-likelihood ratios through an invertible transform [20] and are used in practical 
decoders for error-correcting codes due to operations being simpler to carry out in the 
hyperbolic tangent domain [37]:

In scenarios where the noise is nonzero, soft bits are constrained to the interval (−1, 1) , 
with large magnitude values tending to near-certain soft bits. This is beneficial for data-
driven methods, because a limited dynamic range is also helpful in the stability of deep 
learning methods, where unbounded inputs can lead to exploding gradients [38]. By 
replacing the definition of the log-likelihood ratio from (2), we obtain that the soft bits 
are defined as

We organize the soft bits corresponding to a single MIMO channel use in the soft bit 
matrix � ∈ R

Nt×K .

(1)y = Hx + n,

(2)Li,k = log
P(y|bi,k = 1)

P(y|bi,k = 0)
.

(3)�i,k = tanh
Li,k

2
.

(4)�i,k =

P(y|bi,k = 1)− P(y|bi,k = 0)

P(y|bi,k = 1)+ P(y|bi,k = 0)
.
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2.1.1 � ML soft bits

The likelihoods P(y|bi,k) in (4) can be expanded by the total probability law. For the 
soft bit corresponding to the ith transmitted stream and the kth bit position, let 
¯bi,k = {bj,l |(j, l) �= (i, k)} be the set of all remaining bit positions. The conditional prob-
ability of the (i, k)th bit position is given by

where the sum is taken over all possible values of the vector ¯bi,k , i.e., all bits except the 
position of interest are marginalized. Because the terms in (4) involve conditioning the 
bit bi,k on a specific outcome and together with the marginalization in (5), it follows that, 
under the i.i.d. Gaussian noise assumption, each probability can be expanded as (up to a 
normalization factor):

where we use x to denote each symbol corresponding to a specific combination of 
¯bi,k , bi,k obtained by using the given QAM constellation. Each exponential term in the 
sum in (6) corresponds to the conditional probability of the observed symbols given a 
specific transmitted vector and comes from the Gaussian noise assumption. Finally, the 
optimal maximum likelihood (ML) estimator for the soft bits in channels affected by 
i.i.d. Gaussian noise can be expressed as

2.1.2 � MMSE‑SIC soft bits

The exact evaluation of (7) is computationally prohibitive even in moderately sized sys-
tems. We consider the MMSE-SIC algorithm based on the QR decomposition in [39], 
with a random order, which sequentially estimates the data streams and their corre-
sponding soft bits. The channel matrix H is first augmented by adding the extra rows:

where INt is a square identity matrix of size Nt × Nt . The QR decomposition of the aug-
mented matrix is carried out as H = QR , where Q is an unitary matrix and R is upper 
triangular. The first Nr rows of Q are denoted as

The matrix Q is used to equalize the received symbols y as

(5)
P(y|bi,k) =

∑

¯bi,k∈{0,1}
NtK−1

P(y, ¯bi,k |bi,k)

(6)P(y, ¯bi,k |bi,k) ∝
∑

x∈C|x=QAM
(

¯bi,k ,bi,k

)

exp

(

−

∥

∥y −Hx
∥

∥

2

2

σ 2
n

)

,

(7)�
(ML)
i,k =

∑

x∈C|bi,k=1

exp

(

−
�y−Hx�

2
2

σ 2
n

)

−

∑

x∈C|bi,k=0

exp

(

−
�y−Hx�

2
2

σ 2
n

)

∑

x∈C|bi,k=1

exp

(

−
�y−Hx�

2
2

σ 2
n

)

+

∑

x∈C|bi,k=0

exp

(

−
�y−Hx�

2
2

σ 2
n

) .

(8)H =

[

H; σ 2
n INt

]

,

(9)Q = Q
1:Nr,:

.
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where we used that Q is unitary, and ñ represents the filtered Gaussian noise, with zero 
mean and standard deviation of the ith entry given by the norm of the ith column of Q.

As the equivalent MIMO system in (10) is now upper triangular, sequential detection 
of the symbols and soft bits starts from the Nt th data stream, with the scalar system 
equation:

and the corresponding soft bits are obtained by marginalization only over the bits of the 
ith symbol, via (5). This populates the Nt th row of the matrix �(MMSE−SIC) , and detec-
tion continues sequentially, by subtracting all the previously estimated hard symbols 
from the estimated vector x(MMSE−SIC) . The generic scalar system equation for the ith 
stream is given by

where n̂i , in general, includes the remaining interference terms caused by incorrect 
detection of the previous streams. Assuming correct detection, we have that n̂i = ñi , and 
(5) can be used to estimate the soft bits of the current stream. Finally, the ZF-SIC algo-
rithm has a similar flow, with the difference that H = H , i.e., no matrix augmentation is 
performed before the QR decomposition.

2.1.3 � LMMSE soft bits

In extremely large MIMO systems, the MMSE-SIC estimate may not be avail-
able even for quantization, because of the sequential nature of the algorithm in 
(12). The linear minimum mean squared error (LMMSE) algorithm uses the matrix 
G =

(

HHH+ σ 2
n INt

)

−1
HH to equalize the received symbol vector as

Assuming that the off-diagonal terms of GH are negligible, the MIMO system can be 
decomposed in Nt parallel SISO systems, where the ith system equation is

where gi is the ith diagonal element of GH , and ñi is Gaussian noise with zero mean and 
standard deviation given by the norm of the ith row of G . Estimating the soft bit matrix 
�(LMMSE) is then done separately for each row, using the marginalization only over the 
bits of the ith symbol, via (5).

2.2 � Soft bit quantization

The goal of soft bit quantization is to design the following pair of functions, given the full 
precision ML soft bit estimate �(ML):

(10)ỹ = QHy = Rx + ñ,

(11)ỹNt = rNt ,Nt
xNt + ñNt ,

(12)ŷi = ỹi −

Nt
∑

j=i+1

ri,jx
(MMSE−SIC)
j = ri,ixi + n̂i,

(13)ỹ = Gy.

(14)ỹi = gixi + ñi,
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•	 An encoder fQ that compresses the matrix �(ML) to a lower or equal dimension rep-
resentation z and numerically quantizes z to a bit stream of finite length. In general, 
this function is lossy, and the bit stream encodes an entry in a quantization codebook 
that is fixed and is known to both the transmitter and receiver (e.g., similar to how 
beamforming codebooks are standardized in 5G systems [40]).

•	 A decoder gQ that recovers �(ML) as accurately as possible from a given bit stream, 
with respect to a pre-defined error function.

2.3 � Soft bit estimation

The goal of soft bit estimation is to design a function fE that takes as input the received 
symbols y , channel H , the symbol constellation C and the noise standard deviation σn 
and outputs an estimate of the soft bit matrix �̃ . While (7) is the optimal estimator for 
the soft bits when the noise is Gaussian and independent—a common situation in prac-
tice [40]—the two distinct sums in (7) each involve a number of 2NtK−1 terms. This leads 
to a prohibitive computational complexity even for moderate values of Nt and K, and 
algorithms that approximate the solution �(ML) by reducing the amount of performed 
computations are the main goal in efficient soft bit estimation.

2.4 � Distortion metric for soft bits

While the tasks of soft bit quantization and estimation are different in terms of what 
inputs are available during deployment (inference), they share a common characteristic: 
For both tasks, the output has to approximate the desired soft bits as closely as possible. 
We use the following weighted mean squared error loss to quantify this deviation, which 
represents an extension of the loss in [24] to MIMO scenarios:

where �̃ is the output of the estimator. �(ML) is the desired output (in this case, the ML 
estimate), and the term ǫ acts as a stabilization constant, since some bits can have an 
arbitrarily small absolute value, and would thus need to be reconstructed or estimated to 
an arbitrary precision. Since the impact of the soft bits with very low magnitude values 
is negligible in decoding algorithms [37], we use a value of ǫ = 0.001 to bound the loss in 
(15), chosen as a trade-off between stability and accuracy.

2.5 � Theoretical results

In this section, we prove lower and upper bounds on the representation size ratio of the 
soft bit matrices of the ML and MMSE-SIC algorithms. We define the representation 
size ratio of a surjective mapping f : R

n
→ R

m as the ratio m/n, where any function 
with a ratio strictly higher than one can be used to represent the data (co-domain of f) 
using a lower-dimensional feature space, thus achieving compression. Note that the the-
ory in this section does not cover numerical quantization and requires infinite numerical 
precision for the domain and co-domain of f. In Sects. 3.4 and 3.6, numerical quantiza-
tion is applied to the feature representation, and its impact is evaluated.

(15)L
(

�̃,�(ML)
)

=

Nt
∑

i=1

K
∑

k=1

(

�̃i,k −�
(ML)
i,k

)2

∣

∣

∣
�

(ML)
i,k

∣

∣

∣
+ ǫ

,
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The two bounds derived in this section are helpful in choosing the feature dimen-
sion in a deep autoencoder architecture, where we would ideally like to always use as 
few features as possible and further quantize each of them using a fixed bit budget. 
For the ML soft bits, we prove that the lower bound is achievable for arbitrary chan-
nels by constructing a feature representation that achieves it. We prove the upper 
bound through a special class of diagonalized channels, and in practice we attempt, 
and are successful, in learning a deep autoencoder that achieves the upper bound for 
arbitrary channels in Sect. 3.1. For the MMSE-SIC soft bits, we prove that the upper 
bound can be achieved constructively, for arbitrary channels.

2.5.1 � Lower representation size ratio bound for the ML estimate in arbitrary channels

We directly work with (1) and make no assumptions on x , other than it being sam-
pled from the constellation C . We prove the following lower bound for the represen-
tation size ratio.

Theorem 1  Let y = Hx + n be the noisy received symbols in arbitrary channels. Then, 
there exists a surjective function f : R

Nt(Nt+2)
→ R

K×Nt such that f (z) = �(ML) and a 
representation size ratio of Rlow,ML = K/(Nt + 2) is achieved.

The proof is provided in the Appendix and relies on the QR decomposition of H . 
After equalizing the Q term, the statistics of the noise do not change, and the system 
is now represented by an upper triangular equation. The representation of the upper 
triangular channel itself takes O(N 2

t ) degrees of freedom, because we do not make 
any structural assumptions about the matrix H , and storing the raw channel matrix 
and the received symbols is sufficient for exact soft bit recovery using (4).

2.5.2 � Upper representation size ratio bound for the ML estimate in diagonalized channels

We consider a version of (1) where the transmitter has knowledge of the channel 
matrix H . Furthermore, we assume that the transmitted symbols take the form 
s = Vx , where V represents the matrix of right singular vectors of H and x is drawn 
from C . This type of linear precoding is shown to be optimal when using water-fill-
ing [41] under transmit power constraints. Then, the following theorem holds.

Theorem 2  Let y = Hs+ n be the noisy received symbols, where s = Vx are the trans-
mitted symbols. Then, there exists a surjective function f : R

3Nt
→ R

K×Nt such that 
f (z) = �(ML) and a representation size ratio of Rup,ML = K/3 is achieved.

The proof for the upper bound is provided in the Appendix. Intuitively, this is 
done by recognizing that the channel becomes diagonal after performing left-side 
multiplication with the conjugate transpose of the matrix of left singular vectors 
U . As the MIMO channel can be separated in a set of Nt virtual channels, the soft 
bits corresponding to each virtual channel can be exactly represented using a three-
dimensional vector, regardless of K [24].
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2.5.3 � Upper representation size ratio bound and achievability for the MMSE‑SIC estimate 

in arbitrary channels

Theorem 3  Let y = Hx + n be the noisy received symbols in arbitrary channels. Then, 
there exists a surjective function f : R

3Nt
→ R

K×Nt such that f (z) = �(MMSE-SIC) and a 
representation size ratio of Rup,MMSE−SIC = K/3 is achieved.

The proof for this upper bound is provided in the Appendix. Intuitively, once the system 
is represented in its upper triangular form, we inductively prove that representing each 
row of the soft bit matrix can be done using a three-dimensional vector, regardless of K.

2.5.4 � Design implications of the theoretical results

In practice, the lower bound of K/(Nt + 2) is too weak to use for compressing the ML 
soft bits, as it is possible that Nt ≥ K − 2 . The upper bound, however, is invariant with 
respect to the number of transmitted data streams Nt and always compresses for K ≥ 4 
(i.e., a modulation of 16-QAM or higher order). The two bounds coincide and a feature 
representation that achieves them can be derived in closed form for the particular case 
of Nt = 1 (SISO channels), which recovers the previous work in [24]. However, achiev-
ing the upper bound is non-trivial in arbitrary channels in the case of ML soft bits. A 
key component of EQ-Net is to assume that the upper bound for the ML soft bits can be 
achieved in arbitrary—and not only in diagonalized—MIMO channels. This is verified 
and discussed in Sect. 3.1. While we do not derive such a representation explicitly for the 
ML case, this motivates us to attempt and learn it by using the representational power 
of deep neural networks. In particular, this makes a deep autoencoder a suitable choice, 
where we set the dimension of the bottleneck feature representation to 3Nt , regardless of 
the algorithm used to estimate the soft bits.

2.6 � EQ‑Net: joint estimation and quantization

EQ-Net is a supervised method that uses a deep autoencoder and leverages compres-
sion as a supervised pretraining task for learning a soft bit estimator: When training the 
estimator, we do not learn a direct mapping between received symbols and the soft bit 
matrix, but rather split the learning in two separate stages: 

1	 In the first stage, we train a pair of quantization encoder and decoder functions by 
compressing to a feature representation of size 3Nt (the upper bound for both ML 
and MMSE-SIC in Theorems 2 and 3, respectively).

2	 In the second stage, we train an additional estimation encoder that takes the received 
symbols and CSI as input, and is trained to predict the features of the soft bits, 
obtained from the first stage. In this stage, the features are frozen, and only this new 
encoder is learned.

A high-level functional diagram of EQ-Net is shown in Fig. 1. The ablation experiments 
in Sect. 3.2 show that the two-stage procedure—where we first train the pair fQ and gQ , 
and then reuse fQ to train fE—is an essential step when training a model with limited 
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depth and width, and that single-stage end-to-end training falls into unwanted local 
minima.

2.6.1 � Stage 1: Compression and quantization

In the first stage, we train an autoencoder consisting of a quantization encoder fQ and 
decoder gQ . The input to the quantization encoder is the ML estimate of the soft bits 
�(ML) or, when infeasible due to the large complexity, the MMSE-SIC or LMMSE esti-
mates of the soft bits. The parameters of the quantization encoder and decoder are 
denoted by θf  and θg , respectively. The features output by the encoder are

where � denotes either �(ML) , �(MMSE-SIC) , or �(LMMSE) . Let �̃ denote the matrix of 
reconstructed soft bits as

where Q is a quantization function that maps the interval [−1, 1] to a discrete and finite 
set of points C of size 2Nb , where Nb is the length of the quantized bit word.

During training, we replace the Q operator with a differentiable approximation 
to obtain useful gradients by following previous work [24] and using the noise model 
Q(x) = x + u , where u is drawn from N (0, σu) and σu = 0.001 is chosen small enough to 
avoid an error floor in full precision and to control the effective numerical precision of 
the features during training. The choice of approximating quantization noise with i.i.d. 
Gaussian noise is motivated both by the ease of implementation (the original motivation 
in [24]), and by the recent work in [42], that connects the variance of the added noise 
to the quantization error. In particular, choosing σ 2

u = 0.001 leads to a feature resolu-
tion of approximately ten bits. While this is a finer quantization resolution than used in 
Sect. 3.4 (where we use as few as four bits per feature), it allows for flexibility in using 
a larger number of bits per feature, if desired, whereas injecting more noise during the 
training stage would remove this possibility.

(16)z = fQ
(

�; θf
)

,

(17)�̃ = gQ
(

Q(z); θg
)

,

Quantization encoder

Estimation encoder

Quantization decoder

Quantization
path

Estimation
path Shared path

Fig. 1  High-level block diagram of the EQ-Net architecture. In the first training stage, and at test time for the 
soft bit quantization task, the dashed blocks are learned and used for inference, respectively. In the second 
training stage, the decoder gQ is kept frozen while training the estimation encoder fE . During deployment, 
the top or bottom signal paths are used to output the reconstructed (for quantization) or estimated (for 
estimation) soft bits �̃ , respectively
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The loss function used to learn the parameters θf  and θg of the quantization autoen-
coder is given by

where B is the batch size and L is given by (15), applied element-wise and summed. Once 
the quantization autoencoder is trained, the feature representation z is obtained for all 
training samples by performing a forward pass with the encoder fQ.

2.6.2 � Stage 2: Estimation

In the second stage, we train an estimation encoder fE with parameters θe . This model 
uses the received data streams y and the coherent CSI to recover the feature representa-
tion learned by the quantization encoder. Given a pretrained pair of quantization func-
tions, we can then further use the quantization decoder to recover the estimated soft 
bits. The supervised loss used to train the parameters θE is given by

The choice of using an ℓ1-loss for the feature loss in the estimation phase is empirical and 
investigated in Sect. 3.3, where it is compared to the more conventional mean squared 
error (MSE) loss.

Note that the ground truth soft bit matrix �(ML) is never explicitly used as a target 
output in the second stage, and we instead rely on the pretrained feature extractor given 
by fQ . Obtaining the estimated soft bits from the estimated feature representation is 
straightforward during inference and is done as

A simple single-stage baseline is given by training fE and gQ together (as a single deep 
neural network with a bottleneck size of 3Nt ), without first constructing the features z . 
This is done by using the loss in (18) between the reconstructed soft bits in (20) and the 
ground truth soft bits � . The two-stage approach has the following advantages over this 
baseline:

•	 Training using the two-stage approach is more stable, converges faster and to a lower 
weighted MSE value when we evaluate using gQ . This claim is verified in Sect. 3.2.

•	 Two-stage training allows for the use of a compact and shallow estimation 
encoder, which benefits end-to-end latency when compared to other deep learning 
approaches, as shown by the results in Sect. 3.3.

2.6.3 � Implementation details

The models fQ , fE and gQ are deep neural networks that use fully connected layers. A 
detailed block diagram of the models is shown in Fig. 2. All models use the rectified 
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linear unit activation function in the hidden layers, given by relu(x) = max{x, 0} , with 
the exceptions shown in Fig. 2.

The quantization encoder fQ uses a simple feed-forward, fully connected deep 
neural network with six hidden layers, a width of 4NtK  for the hidden layers, and 
3Nt for the output layer, which matches the upper bound in Theorem 2. Importantly, 
the width of each layer scales with modulation order, while the depth remains fixed, 
which is a design choice taken to increase the representational power of the network 
without sacrificing latency in higher-order modulation scenarios. The quantization 
decoder gQ uses the branched architecture in Fig. 2b: The latent representation is sep-
arately processed using KNt parallel, feed-forward, fully connected deep neural net-
works, each with six hidden layers and the same width as the encoder.

To numerically quantize the latent feature representation during testing, a factor-
ized quantization codebook for the features z is learned by separately applying a scalar 
quantization function to each of its entries. We use the same data-based approach as 
[24] and train a k-means++ [43] scalar quantizer after fQ and gQ have been trained. 
We learn a separate quantizer for each latent feature. The memory cost for storing all 
the scalar quantization codebooks is less than 2 kB in all the experiments and scales 
linearly with Nt.

The estimation encoder fE takes as input the triplet (y,H, σn) and uses their flat-
tened, real-valued (obtained by concatenating the real and imaginary parts) versions 
with a dense layer for each signal, followed by a concatenation operation. This is an 
early feature fusion strategy we have used due to the three input signals having dif-
ferent dimensions and scales. A single residual block of the estimation encoder con-
tains an additional six hidden layers with residual connections between them, and is 
expanded in Fig. 2c.

Fig. 2  Internal architecture for the deep neural networks in Figure 1. The blue blocks are fully connected 
layers, with the output dimension displayed. The yellow and green blocks represent the relu and tanh 
activations, respectively, while the purple block represents a concatenation operator. a The architecture of 
the quantization encoder fQ . b The architecture of the quantization decoder gQ . c The architecture of the 
estimation encoder fE , composed of (potentially) multiple residual blocks. The internal architecture of a single 
residual block is shown here
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We use the Adam optimizer [44] with a batch size of 32768 samples, learning rate of 
0.001 and default TensorFlow [45] parameters for both stages. Training, validation and 
test data consist of pre-generated ML or MMSE-SIC (in high-dimensional MIMO) soft 
bit estimates using (4) from 10000, LDPC-coded packets of size (324, 648), at six loga-
rithmically spaced SNR values, dependent on the system size. The bits in a codeword 
are modulated, grouped in MIMO vectors, and transmission is simulated across differ-
ent (randomly chosen) MIMO channels during training. The receiver uses either ML or 
MMSE-SIC algorithm to estimate the soft bits, which are used to train fQ and gQ . The 
data are split using a 80/10/10 train/validation/test ratio. We investigate the following 
SU-MIMO scenarios: 

1	 2× 2 , 64-QAM and 4 × 4 , 16-QAM, both trained using ML soft bits. Our findings 
in Sects. 3.3 and 3.4 show that EQ-Net is viable for both estimation and quantization, 
respectively.

2	 8× 8 , 16-QAM and 16× 16 , 16-QAM, both trained using the MMSE-SIC soft bits. 
We find that EQ-Net achieves state-of-the-art performance for soft bit quantization 
in Sect. 3.5, and discuss the limitations of using estimation in Sect. 3.8.

3	 32× 32 , 16-QAM and 64 × 64 , 16-QAM, where we investigate the performance of 
applying the models trained on 16× 16 , MMSE-SIC scenarios to larger sizes, and the 
LMMSE estimate, in quantization mode. Results are presented in Sect. 3.5.

Publicly available implementations can be found in the online code repository1.

2.7 � Operating modes

Training the components of EQ-Net is done offline, by first collecting (or simulating, 
if accurate environment models are available) a dataset of training ML soft bits � , the 
corresponding samples, and CSI information. Estimating the CSI information itself will 
require pilot symbols [46], but EQ-Net training is agnostic to their structure or num-
ber. Once this dataset is collected, the two phases described in Sect. 2.6 are applied in 
sequence to train the models in EQ-Net.

Figure 3 shows the role of EQ-Net during receiver deployment with a HARQ proto-
col, and how the three blocks in Fig. 1 are used. In estimation mode, the algorithm uses 
y,H and σn as inputs for the estimation encoder fE , followed by the decoder gQ , and 
outputs the estimated soft bit matrix � . As the results in Fig. 4 have showed, inaccurate 
CSI may, in general, degrade the performance of the EQ-Net soft bit estimation mod-
ule. While not explored in this work, further training (adapting) the estimation module 

Fig. 3  Block diagram showing the deployment of EQ-Net in a MIMO receiver system architecture. The model 
gQ is shared between the estimation and quantization functionalities

1  https://​github.​com/​utcsi​lab/​eq-​net

https://github.com/utcsilab/eq-net
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during deployment to account for inaccurate CSI using a robust optimization objective 
[47] is possible.

Any external soft bit estimation algorithm (e.g., ML, or MMSE-SIC) can be used, 
instead of the EQ-Net estimation encoder. This does not preclude EQ-Net being used for 
quantization, and the modes do not need to be used together, even though the model gQ 
is shared between them. If codeword decoding fails, the soft bits from the failed trans-
mission must be stored, as shown in Fig. 3. If the soft bit estimation module outputs log-
likelihood ratios instead of soft bits, then we apply the transform in (3) to convert them 
to soft bits. The failed, soft codeword is first split into matrices of soft bits corresponding 
to different MIMO channel uses, and each matrix � is fed to the encoder fQ and quan-
tized, yielding a bit string representing the quantized soft bit matrix. This representation 
is stored, and the soft bits are decoded (reconstructed) using gQ and converted to log-
likelihood using the arctanh function when the second codeword transmission arrives 
and soft combining is performed.

3 � Results and discussion

3.1 � Verifying Theorems 1 and 2

To verify the two bounds for ML soft bits in MIMO channels, and whether the upper 
bound can be achieved, we treat the latent feature dimension as a hyper-parameter and 
perform an ablation experiment over its size. We train a series of quantization models 
(the pair of models fQ and gQ ), where the only parameter that changes is the size of this 
feature representation. For exemplification, we target a 2× 2 , 64-QAM, i.i.d. Rayleigh 
fading scenario, but this result also holds for the 4 × 4 , 16-QAM, i.i.d. Rayleigh fading 
scenario used in Sect. 3.3. For the considered scenario, Theorem 1 states that the latent 
feature dimension corresponding to the lower bound is eight, while Theorem 2 gives a 
dimension of six matching the upper bound.

Fig. 4  Estimator robustness of EQ-Net (L), and the similarly performing NN-Det (P) under imperfect CSI 
for 2× 2 , 64-QAM, i.i.d. Rayleigh fading, and LDPC-coded with size (324, 648). The plot shows the coded 
block error rate at SNR=17.3 dB as a function of the CSI error. The two horizontal lines show the average 
end-to-end performance of the two algorithms with ideal CSI knowledge at the same SNR value
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Figure  5 shows the end-to-end block error rate performance averaged over 10000 
codewords when the feature dimension is the only parameter that changes in a series of 
autoencoder models. In all cases, the ML soft bit matrix is estimated using (4), and used 
to train and evaluate the autoencoder with a given bottleneck size. For reference, we also 
plot the performance of the ideal, uncompressed ML estimate. The following conclu-
sions can be drawn from this plot: 

1	 The upper bound (in this case, corresponding to dim(z) = 6 ) is sufficient to achieve 
near-optimal performance, with minimal (less than 0.1 dB) performance losses. We 
posit that this departure from the ideal curve in Fig. 5 is due to the residual training 
error, even when quantization is not applied to the feature space. Because optimiz-
ing the weights of a deep neural network with nonlinear activation is a non-convex 
problem, the training loss in (18) is not exactly zero at the end of training, or for the 
test samples. This implies that soft bits will always be distorted by fQ and gQ , even 
without numerical quantization. In practice, this could be mitigated by training the 
model for significantly longer, and using significantly more training data, as well as 
using cyclical learning rate schedules that escape from local minima [48].

2	 Any attempt to further compress the soft bit matrix beyond this limit—that is, cases 
where dim(z) < 6—is met with an increase in error and departure from ML perfor-
mance, providing evidence that the representation size ratio of Theorem 2 is optimal 
for the ML soft bits.

3	 To capture scenarios that require reliable communications, we simulate SNR val-
ues larger than 18.5 dB using one million codewords and still find no significant 
deviations from optimal performance for dim(z) ≥ 6—note that the error for the 
dim(z) = 6 curve is exactly zero at the 20.3 dB point, due to the finite number of 
simulated codewords. The matching bit error rate in high SNR (greater than 20 dB) 

Fig. 5  Impact of latent feature dimension on different instances of EQ-Net without numerical quantization 
in an i.i.d. Rayleigh fading, 2× 2 , 64-QAM scenario using an (324, 648) LDPC code. A feature dimension of six 
corresponds to the upper bound in Theorem 2, which is proven explicitly for diagonalized channels, but is 
shown here to be practically achievable for arbitrary channels
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is empirically less than 10−7 , thus to further reduce this performance gap, an outer 
code such as the Reed–Solomon code [49], with a high rate, could be used.

This result justifies the use of a latent feature space of dimension 3Nt in all the remaining 
experiments.

3.2 � Importance of two‑stage training

We investigate the difference in performance of the proposed two-stage learning 
approach against a single-stage learning baseline that combines (15) and (19). We use 
exactly the same architecture in both cases. Figure  6 shows the validation loss during 
training (left), as well as the validation coded block error rate after 500 epochs of training 
(right), for both methods in a 2× 2 , 64-QAM, and i.i.d. Rayleigh fading scenario. This 
highlights the superior performance of the proposed two-stage method: baseline single-
stage training is unstable and converges much slower, whereas the two-stage method is 
more stable—as shown in the left side of Fig. 6—and converges to a solution with lower 
coded block error rate—as shown in the right side of Fig.  6. While it is possible that the 
single-stage approach will eventually converge (either through significantly longer train-
ing time, or by using a significantly larger neural network), this can be achieved much 
faster with the proposed approach.

3.3 � Estimation performance

We implement and evaluate two variants of EQ-Net: EQ-Net (L) (one residual block) 
and EQ-Net (P) (three residual blocks). We compare our method with two state-of-the-
art deep learning baselines: the scheme in [34]—that we further refer to as NN-Det for 

Fig. 6  Comparing the two-stage training of EQ-Net and a naïve supervised baseline that jointly trains the 
estimation encoder and the decoder from scratch, in a single stage. In both cases, the networks have the 
same architecture and initial weights, and the same number of gradient updates is performed. The plot 
includes shaded standard deviation areas over ten runs. (Left) Validation error (soft bit distortion). (Right) 
Validation coded block error rate with models taken after 500 epochs
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brevity—and the OAMP-Net2 approach in [32]. We additionally compare with three 
non-learning-based approaches: ZF-SIC, MMSE-SIC (both implemented via the QR 
decomposition, as in [39]), and soft-output SD implemented using the default MAT-
LAB algorithm based on [29]. For 4 × 4 , 16-QAM, we train a single NN-Det model with 
ten unfolded blocks, labeled as high-performance (P). For 2× 2 , 64-QAM, we train two 
variants of NN-Det: NN-Det (P) (four unfolded blocks), and NN-Det (L) three unfolded 
blocks) which trades off some of the performance for lower end-to-end latency. Imple-
mentations of the baselines are available along with our source code.

Fig. 7  Estimation (MIMO detection) performance of EQ-Net (including an ablation result on using MSE loss 
for the second training stage) against state-of-the-art approaches in 4× 4 , 16-QAM, Rayleigh fading, and 
LDPC-coded with size (324, 648). Table 1 compares the inference latency of the methods

Table 1  Latency benchmarks of soft-output MIMO detection algorithms for a 4× 4 , 16-QAM 
scenario

B represents the batch size during parallelized inference. All values are expressed in milliseconds and represent average 
execution times for the entire batch

EQ-Net NN-Det OAMP- MMSE- ZF- SD
(L) (P) Net2 SIC SIC

Latency CPU [ms], B = 1 1.807 3.456 2.835 0.839 0.760 1.622

Latency CPU [ms], B = 16 2.256 3.953 3.227 1.109 1.012 19.52

Latency GPU [ms], B = 8192 9.107 17.251 30.501 8.248 6.253 –

Table 2  Latency benchmarks of evaluated soft-output MIMO detection algorithms for a 2× 2 , 
64-QAM scenario. B represents the batch size during parallelized inference. All values are expressed 
in milliseconds and represent average execution times for the entire batch

EQ-Net EQ-Net NN-Det NN-Det OAMP- MMSE- ZF- SD
(L) (P) (L) (P) Net2 SIC SIC

Latency CPU [ms], B = 1 1.511 1.903 2.269 2.689 2.125 0.603 0.559 0.6935

Latency CPU [ms], B = 16 1.767 2.292 2.565 3.073 2.376 0.831 0.787 4.547

Latency GPU [ms], B = 8192 6.523 8.767 12.61 15.91 25.94 7.907 5.311 —
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Figures  7 and  8 plot the performance in 4 × 4 , 16-QAM and 2× 2 , 64-QAM sce-
narios, respectively. For the 64-QAM scenario, EQ-Net (L) achieves the same perfor-
mance as the high-performance NN-Det (P). This is better highlighted in Fig. 7, where 
the same conclusion is evident. We observe that using the ℓ1-loss in (19) surpasses the 
MSE version. We attribute this to the fact that the feature representation is bounded to 
the (−1, 1) interval in the first training stage, causing the MSE to shrink—and slow down 
learning—when squared errors are used in the second stage. In contrast, the ℓ1-loss effi-
ciently learns when features are concentrated around the origin. The performance of 
EQ-Net also surpasses the ZF-SIC and MMSE-SIC baselines, but there is still a gap with 
respect to the SD algorithm.

We quantify end-to-end latency for processing a batch of B samples (including 
transfer to/from GPU where applicable) by measuring the average (using 10,000 
batches) execution times using the timeit Python module for all algorithms. For 
the CPU measurements, the processing is executed on a single thread. The CPU is 
an Intel i9-9900x running at 3.5 GHz, and the GPU is an NVIDIA RTX 2080Ti. From 
Table 2 and Table 1, it is observed that, while SD is efficient for a batch size of one, 
the degree of parallelism is much lower, explained by the heavy use of sorting and the 
tree search procedure [29]. In contrast, the deep learning-based approaches do not 
require sorting operations, leading to more efficient parallel implementations that 
favorably scale with the batch size. ZF-SIC and MMSE-SIC also show low latency 
in both scenarios, but suffer from a performance drop. The number of parameters 
(weights) of EQ-Net is equal to 440k for EQ-Net (L), and three times more for EQ-
Net (P), while NN-Det (L) and NN-Det (P) use a total of 195k and 260k, respectively. 
In contrast, OAMP-Net2 does not use any deep neural networks and only has 16 
trainable parameters (two for each of the eight unfolded blocks used).

The reduced latency compared to the other deep learning methods is attributed to 
the fact that the baselines rely on unfolded detection approaches and require addi-
tional linear algebra computations, such as matrix inversion and conjugate multiply 

Fig. 8  Estimation (MIMO detection) performance of EQ-Net versus state-of-the-art approaches in 2× 2 , 
64-QAM Rayleigh fading, and LDPC-coded with size (324, 648). Table 2 compares the inference latency of the 
methods
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after each iteration. These operations are sequential and increase the end-to-end 
inference latency. In contrast, our approach does not involve any additional opera-
tions. The last lines in Tables 1 and 2 highlight the increased latency gap when the 
algorithm is used in a scenario with a large number of orthogonal (e.g., multiplexed 
in the frequency domain) SU-MIMO users, where the base station performs compu-
tations in large batches. In this case, EQ-Net is competitive in terms of latency with 
the ZF-SIC and MMSE-SIC baselines.

3.4 � Quantization performance

For the quantization task, we investigate the performance of EQ-Net against the max-
imum mutual information (MI) quantizer in [20] and the deep learning baseline in 
[24], both designed for SISO scenarios. We extend these methods to MIMO scenar-
ios by splitting the soft bit matrix into rows and quantizing each of them separately. 
To test the quantization methods, random payloads are generated, encoded using an 
LDPC code of size (324, 648), modulated using QAM, transmitted across a number 
of different MIMO channels (with fading and noise). At the receiver, soft bits are first 
estimated with either the ML, MMSE-SIC, or LMMSE algorithms, after which finally 
the soft bits are quantized and reconstructed to evaluate distortions. For EQ-Net, we 
train a separate k-means++ quantizer with 64 levels for each scalar dimension of the 
latent space, thus requiring six bits of storage for each feature, per MIMO channel 
use. For a 2× 2 , 64-QAM scenario, this amounts to compressing the soft bit matrix 
(twelve soft bits per MIMO channel use) using a 36-bit codeword, leading to an effec-
tive storage cost of three bits per soft bit.

The results in Fig.  9 show that EQ-Net is superior to both baselines and can effi-
ciently quantize the soft bit matrix, with a minimal performance loss. Compared 
to the deep learning baseline, EQ-Net achieves a 16% compression gain at the same 
end-to-end performance, whereas compared to the maximum MI quantizer, EQ-Net 

Fig. 9  Quantization performance of EQ-Net evaluated against state-of-the-art methods in 2× 2 , 64-QAM, 
i.i.d. Rayleigh fading, and LDPC-coded with size (324, 648)
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boosts the performance of the system by 0.65 dB while using the same storage budget. 
This increase in performance highlights the importance of jointly learning a feature 
space across the spatial dimensions of MIMO channels.

3.5 � Quantization in large‑scale MIMO scenarios

When considering large, spatial multiplexing SU-MIMO scenarios with a high modu-
lation order, the ML estimate �(ML) is no longer practically attainable even during the 
offline training stage. Note that, according to Theorem  2, a modulation order of at 
least K = 4 (16-QAM) is required to achieve feature compression, which justifies our 
choice of K = 4 for the remainder of this section.

For 8× 8 and 16× 16 MIMO scenarios with 16-QAM, Fig. 10a and b shows the per-
formance of EQ-Net and the two quantization baselines, when three bits are used per 
soft bit. It can be seen that EQ-Net surpasses both baselines at the same bit budget. 
More interestingly, all quantization methods improve the performance compared to 
floating point soft bit estimation with MMSE-SIC. We attribute this effect to an effect 
similar to that which occurs in systems that use hybrid hard/soft bit estimation [50]—
clipping log-likelihood ratios (in our method, implicitly, by quantizing the recon-
structed soft bits �̃ ) using well-tuned clipping levels can compensate for hard errors 
introduced in the MMSE-SIC detection chain, especially for larger MIMO scenarios.

Fig. 10  Quantization performance of EQ-Net evaluated against state-of-the-art methods in large and 
very large MIMO, 16-QAM, i.i.d. Rayleigh fading, and LDPC-coded with size (324, 648). a 8× 8 MIMO, using 
MMSE-SIC soft bits for training and testing. b 16× 16 MIMO, using MMSE-SIC soft bits for training and testing. 
c 32× 32 MIMO, using MMSE-SIC soft bits for training and LMMSE soft bits for testing. d 64× 64 MIMO, using 
MMSE-SIC soft bits for training and LMMSE soft bits for testing
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Figure 10c and d plots the performance of EQ-Net and the baselines, when quan-
tizing LMMSE soft bits in 32× 32 and 64 × 64 scenarios with 16-QAM, respectively. 
In the case of EQ-Net, we do not train new models fQ and gQ , but instead reuse the 
models trained for 16× 16 , 16-QAM by separately quantizing sub-matrices of 16 
rows from the soft bit matrix �(LMMSE) . Empirically, we find that learning a model for 
32× 32 from scratch involves very wide networks that are difficult and costly to train, 
as width scales with Nt , according to Fig. 2.

From Fig. 10c and d, we conclude that the quantization part of EQ-Net is robust to 
input shifts in the quantization mode and can scale to large MIMO scenarios—even 
when trained on soft bits derived from the MMSE-SIC algorithm, the model can quan-
tize LMMSE soft bits, surpassing the deep baseline, and remaining competitive with the 
MI baseline.

3.6 � Robustness to distributional shifts

Practical communication scenarios involve test-time distributional shifts, or may be 
faced with imperfect CSI during deployment. For soft bit estimation and quantization, 
the most fragile part of the system is given by the matrix H , and any distributional mis-
match that occurs. To evaluate the robustness of our approach, we consider models 
trained on channels from an i.i.d. Rayleigh fading model and tested on realizations of the 
CDL-A channel model adopted by the 5G-NR specifications [51].

Figure 11 shows the quantization performance under this shift in a 2-by-2 64-QAM 
scenario, where EQ-Net (Rayleigh) is a model trained using Rayleigh channels and EQ-
Net (5G) is an identical model trained using realizations of the CDL-A channel model. 
While a performance gap of around 1 dB is apparent between EQ-Net (5G) and the ML 
solution, the EQ-Net (Rayleigh) model is robust and does not exhibit error floors or 
performance losses. This is a strong indicator that the quantization learned using Ray-
leigh channels can be used in a wide variety of conditions and is further discussed in the 
section.

Fig. 11  Quantization performance of EQ-Net under a severe distributional shift induced by training on i.i.d. 
Rayleigh fading channels and testing on the 5G-NR CDL-A MIMO channel model for 2× 2 , 64-QAM, and 
LDPC-coded with size (324, 648)
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Figure  12 investigates the estimation performance under the same shift and reveals 
a higher degree of robustness compared to the NN-Det approach, retaining a perfor-
mance close to that of the ZF-SIC and MMSE-SIC algorithms in the low- and mid-SNR 
regimes, and being surpassed in the high SNR regime. We attribute this error floor to the 
ill-conditioned channels in the CDL-A models: Because we are using spatial multiplex-
ing in this scenario, all sub-optimal algorithms suffer a performance drop, and the shal-
low EQ-Net is no longer sufficient to achieve near-ML performance. A potential fix here 
is to increase the depth of the estimation encoder fE , at the cost of increased latency.

We finally investigate the performance of our approach in the case of CSI estimation 
impairments at the receiver. For this, we use a corrupted version of H generated from the 
model Ĥ = H+N , where N is Gaussian noise with zero mean and covariance matrix 
σ 2
CSIINr×Nt . This models impairments coming from the channel estimation module and 

is a widely used model to test the robustness of downstream estimation algorithms [52, 
53]. Figure 4 plots test performance with corrupted CSI in a 2× 2 MIMO scenario with 
64-QAM and shows that EQ-Net is as robust as the NN-Det baseline to this type of 
impairment, while still benefiting from the lower latency in Table 2.

3.7 � Limitations: estimation in large‑scale MIMO scenarios

We have attempted to train the estimation part (second stage) of EQ-Net for large 
MIMO scenarios and found that this is faced in the following challenges:

•	 Because the width of the estimation encoder is proportional to N 2
t  , the total number 

of weights increases in the order of O(N 4
t ) , becoming prohibitive even for Nt = 8 

(more than three million weights).
•	 Because we can only generate MMSE-SIC soft bits for training, learning to estimate 

them is difficult when using a feed-forward architecture, due to the recursive nature 

Fig. 12  Estimation performance of EQ-Net (L), and the similarly performing NN-Det (P) under a severe 
distributional shift induced by training on an i.i.d. Rayleigh fading channel, and testing on the 5G-NR CDL-A 
MIMO channel model for 2× 2 , 64-QAM, and LDPC-coded with size (324, 648)
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of the algorithm. Using a recurrent architecture for fE could be a potential fix for this 
issue, but would involve major changes to the design in Fig. 2(c).

•	 Finally, the latency of MMSE-SIC is still acceptable in 8× 8 and 16× 16 scenarios 
(e.g., below 5 ms for a batch size of one, on CPU)—thus, supervised learning of soft 
bit estimation with deep learning is faced with the challenge of learning from sub-
optimal estimates, and it is still an open problem if deep learning can significantly 
surpass the algorithm used to generate the training soft bits in performance.

Taken together, the above issues currently limit the estimation part of the EQ-Net 
framework to be advantageous against competing methods only in small MIMO sce-
narios, up to 4 × 4 , where the ML soft bits (which do not recurrent evaluation) are 
tractable during the offline training stage. A promising direction of future research is 
to incorporate algorithm specific changes—such as the recurrent nature of MMSE-
SIC—into the deep learning architecture of fE , while still using the two-stage 
approach of EQ-Net. A recent example of architectural design in this sense is given 
in [54], where interference cancelation steps are interleaved with a learnable model.

Finally, a large portion of the complexity of fE comes from taking as input the full 
CSI matrix H . Without further assumptions on the distribution of H in an environ-
ment, this is required for accurate soft bit estimation. Using only incoherent infor-
mation about H , obtained offline, could be a way of significantly reducing inference 
complexity in environments with strong assumptions.

4 � Conclusions
In this paper, we have proposed a deep learning framework that jointly solves the tasks 
of soft bit estimation and quantization in MIMO scenarios. We have derived theoreti-
cal lower and upper bounds on the size of distortion-free representations of ML and 
MMSE-SIC soft bits in MIMO channels and further showed evidence that the upper 
bound for ML soft bits is practically achievable in arbitrary channels. Our approach has 
been shown to be practical in terms of latency and is compatible with any MIMO sys-
tem, such as the MIMO-OFDM used in 5G scenarios, relaying scenarios, or distributed 
communication systems, which would benefit from both quantization and estimation 
gains. Throughout evaluation, our approach has shown superior performance, competi-
tive distributional and impairment robustness to state-of-the-art deep learning-based 
estimation methods.

One drawback that remains is the presence of an error floor when faced with severe 
distributional shifts at test time, as per Fig. 12. Even though our results show that this 
floor is much lower than that of the prior deep learning-based work in [34], there is 
still room for improvement, at least in overcoming the MMSE-SIC algorithm across 
the entire SNR range. For example, our method could be extended to account for per-
turbations during training or be trained on a dataset that pools together realizations of 
multiple channel models. Another promising direction for future work is removing the 
requirement of training a separate model for each MIMO configuration and leveraging 
flexible deep learning architectures to learn universal algorithms for soft bit processing.
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Appendix
Proof of Theorem 1

Let the QR decomposition of H be given by H = QR , where Q satisfies QHQ = INt and R is 
a square upper triangular matrix. This decomposition exists for any arbitrary channel, even 
if the matrix H is rank-deficient. Then, after left-side multiplication with QH , the system in 
(1) becomes

Given that the rows of Q are orthonormal, it follows that 
∥

∥y −Hx
∥

∥

2

2
=

∥

∥ỹ − Rx
∥

∥

2

2
 , for 

any x . Then, by replacing all the norms in (7), it follows that

Thus, there exists a surjective function that maps the features ỹ/σ 2
n  and R/σ 2

n  to the 
matrix of soft bits �(ML) by implementing the equation above. In this case, the dimen-
sion of the domain of the function is given by the cost of storing these features. As ỹ is a 
complex-valued vector of length Nt , it can be stored using 2Nt real-valued features. R is a 
complex-valued upper triangular matrix of size Nt × Nt with real-valued elements on its 
diagonal, and it can be stored using Nt and 2 (Nt−1)Nt

2  real-valued features for its diagonal 
and off-diagonal terms, respectively. Thus, we have that

real-valued features are sufficient to reconstruct �(ML) exactly. Thus, there exists a sur-
jective function f : R

Nt(Nt+2)
→ R

K×Nt such that f (ỹ,R) = �(ML) . The representa-
tion size ratio of this function is equal to Rlow,ML =

KNt
Nt(Nt+2) =

K
Nt+2 , proving the lower 

bound.

Proof of Theorem 2

Let the singular value decomposition of H be given by H = USVH , where U and V both sat-
isfy UHU = VHV = INt and S is a real-valued, diagonal matrix of size Nt × Nt.

Given that the transmitted symbols are s = Vx , the system in (1) takes the form:

Then, as U is orthonormal, left-multiplying with UH leads to the post-processed received 
symbols:

where ñ is still i.i.d. Gaussian noise when U is orthonormal. Finally, as S is diagonal, it 
follows that the soft bits corresponding to the ith transmitted symbol only depend on 
the equation:

ỹ = QHy = Rx +QHn = Rx + ñ.

�
(ML)
i,k =

∑

x∈C,bi,k=1

exp

(

−
�ỹ−Rx�

2
2

σ 2
n

)

−

∑

x∈C,bi,k=0

exp

(

−
�ỹ−Rx�

2
2

σ 2
n

)

∑

x∈C,bi,k=1

exp

(

−
�ỹ−Rx�

2
2

σ 2
n

)

+

∑

x∈C,bi,k=0

exp

(

−
�ỹ−Rx�

2
2

σ 2
n

) .

2Nt + Nt + 2
(Nt − 1)Nt

2
= Nt(Nt + 2)

y = Hs+ n = USVHVx + n = USx + n.

ỹ = UHUSx +UHn = Sx + ñ,
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According to [24], the soft bits for each transmitted symbol in a scalar channel can be 
derived from a three-dimensional real-valued feature representation by explicitly storing 
the complex-valued ỹ and the complex-valued si/σ 2

n  . Thus, the soft bit matrix �(ML) can 
be represented using a 3Nt-dimensional feature representation when the channel is diag-
onalized. The representation size ratio of this function is equal to Rup,ML =

KNt
3Nt

=
K
3 .

Given that Nt ≥ 1 , we have that Rup represents an upper representation size ratio 
bound for K ≥ 3 and arbitrary channels H , because at least the subset of soft bits derived 
from diagonalized channels cannot be represented using fewer features without further 
assumptions.

Proof of Theorem 3

The proof is by induction. Considering (12) and assuming that ni is Gaussian, then ñi is 
also Gaussian, as n and Q are independent. The closed-form expression of the kth LLR of 
the Nt th symbol is given by

Then, the above equation is a function fNt (ỹNt/σ
2
ñNt

, rt,t/σ
2
ñNt

) = L
(MMSE−SIC)
:,Nt

 . Given that 

ỹNt is a complex scalar, rNt ,Nt
 is a real scalar, and σ 2

ñNt
 is real scalar, it follows that the LLR 

vector corresponding to the last spatial stream can be exactly represented by a three-
dimensional real vector. This proves the case Nt = 1 , where sequential detection is 
completed.

The equation for estimating the LLR values corresponding to the ith symbol, given the 
previous Nt − i estimates given by

Letting ŷi = ỹi −
∑Nt

j=i+1 ri,jx
(MMSE−SIC)
j  , and treating the remaining interference as 

Gaussian, we obtain the compact model in (12) as

and there exists a function fi(ŷi/σ 2
n̂i
, ri,i/σ

2
n̂i
) = L

(MMSE−SIC)
:,i  for each i.

It follows that, given estimates for the previous Nt − i symbols, the LLR values of the 
ith symbol can be exactly represented by a vector with three real values, regardless of the 
modulation order. Thus, by induction, there exists a function f : R

3Nt
→ R

K×Nt such 
that f (ŷ, diag(R)) = L(MMSE-SIC) . Using that �i,k = tanh

Li,k
2  is a bijective function of L, 

for all i, k, it follows that Rup,MMSE−SIC =
KNt
3Nt

=
K
3 .

ỹi = sixi + ñi.

L
(MMSE−SIC)
k ,Nt

= log

∑

xj ,bk=1 exp

(

−

|ỹNt−rNt ,Nt xj |
2

σ 2
ñNt

)

∑

xj ,bk=0 exp

(

−

|ỹNt−rNt ,Nt xj |
2

σ 2
ñNt

) .

ỹi = ri,ixi +

Nt
∑

j=i+1

ri,jxj + ñi.

ŷi = ri,ixi + n̂i,
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