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1  Introduction
The digital world meets rapid evolutions due to the huge growth of data. According to 
International Data Corporation (IDC) report, data will grow up to 175 Zettabytes by 
2025 [1]. Storing data follows a lot of burdens for owners such as constraints of physical 
devices, data recovery and also the concern of inaccessibility and cyberattacks. Cloud 
storage has provided an efficient and promising solution to relieve organizations and dif-
ferent users of data storing issues since the mid-1990s. Cloud storage has several advan-
tages such as the feasibility to access outsourced data anytime from anywhere, through 
the Internet and to contribute stored data with permission. Fast immigration toward 
cloud services and close contest of providers to offer the best facilities with reasonable 
cost are great motivations to find novel solutions to improve cloud storage performance. 
Generally, cloud storage works based on the fragmentation of data content and distribu-
tion of fragments over storage nodes. Two main techniques are employed to ensure data 
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reliability and availability in distributed storage systems: replication and coding. Replica-
tion is the most straightforward method, distributing copies of data over storage nodes. 
High storage space requirement is the main drawback of replication-based storage, and 
it is not suitable for distributed systems with high concurrent access requests. Coding-
based storage systems can achieve reliability many orders of magnitude higher than 
replication-based systems for the same redundancy level [2]. There have been plenty of 
works on erasure codes-based distributed systems [3–7]. High decoding complexity and 
communication cost to repair a corrupted data fragment reduce popularity of this solu-
tion. In order to generate a corrupted encoded packet, usually, reconstruction of all the 
original packets is required. Thus, the communication cost to repair is equal to the size 
of the entire original. Reduction in repair communication cost can be achieved by net-
work coding-based storage which works through combining encoded packets in healthy 
nodes. The utilization of Gaussian elimination decoding in network codes and optimal 
erasure codes makes them inefficient [8–10]. Near-optimal codes such as LT codes with 
low complexity encoding and decoding have been proposed for reliable cloud storage 
systems. If near-optimal codes are exploited, the variation of one original symbol only 
changes a few numbers of encoded symbols, whereas, in an optimal codes-based sys-
tem, almost all encoded symbols may be affected by a little bit of modification. Although 
the number of original packets may be smaller in previous methods, the decoding pro-
cess performs much faster than in the other storage services [11, 12]. In this paper, we 
investigate the performance of LT code-based cloud storage with two recent degree 
distributions in addition to robust soliton distribution. We study the effects of different 
parameters value on successful data retrieval. In the following, we propose new algo-
rithm to reduce the retrieval time of user data. The rest of this paper is organized as 
follows. In Sect. 2, related works are reviewed briefly. In Sect. 3, we present LT codes 
descriptions and their degree distributions. Our system model is stated in Sect. 4. We 
discuss the performance analysis such as parameter selection, simulation results com-
parison, and time improvement in Sect. 5. Finally, in Sect. 6, we bring a conclusion to the 
paper.

2 � Related works
Coding has been widely used in cloud storage systems to improve their performance 
in different aspects. Local reconstruction codes (LRC) as a subset of erasure codes are 
introduced in [5], keeping storage overhead low compared with Reed–Solomon codes in 
Windows Azure Storage. Significant decrease in bandwidth and I/Os during repair and 
improvement in latency for large I/Os are achieved by LRC. In [6], a distributed storage 
system provides fast content downloads by encoding contents with maximum separable 
codes (MDS) and applying fork-join queuing for user requests. Results show an essential 
trade-off between expected download time and storage space which can be useful in the 
design of a system with delay constraints.

Exploiting LT codes with speculative access mechanisms for parallel writing and read-
ing in a distributed storage architecture leads to high and robust performance [11, 13, 
14]. Due to introducing symmetric data redundancy and rateless property of LT codes, 
the proposed system has high flexibility on data access and improvement compared to 
traditional parallel storage systems. In [12, 15], a secure cloud storage service is designed 
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with near-optimal LT codes to solve the reliability issue. The proposed scheme presents 
efficient data retrieval by exploiting the fast belief propagation decoding algorithm and 
also utilizes the public integrity verification which helps the data owner to be free from 
the burden of being online. Proposed scheme presents efficient data retrieval by exploit-
ing the fast belief propagation decoding algorithm and moreover utilizes public integ-
rity verification which helps the data owner be free from the burden of being online. 
Employing exact repair minimizes data repair complexity and reduces cost. Although 
the performance analysis and experimental results show an equivalent storage and com-
munication cost in comparison with other erasure codes-based systems, this secure 
cloud storage service achieves a much faster data retrieval. Compared to network cod-
ing-based storage systems, the proposed service reduces storage costs and provides 
faster data retrieval with comparable communication costs.

In [16], LT-based architecture was proposed for the back-end of block-level cloud 
(BLCS) storage that achieves sufficient levels of performance in terms of access and 
transfer, availability, integrity, and confidentiality. Interesting features of LT codes such 
as low complexity and on-the-fly redundancy setting make them suitable for the BLCS 
system. Results indicate that by applying appropriate system parameters, good compro-
mise can be achieved, and the proposed BLCS outperforms traditional ones.

The main trade-off between file retrieval delay and successful decoding probability is 
investigated in a distributed cloud storage system [17]. The proposed multi-stage user 
request scheme plays an efficient role in average retrieval delay reduction. Solving opti-
mization problems for optimal two-stage request scheme determines the proper number 
of packets requested in the first stage and follows high decoding probability.

3 � Methods
3.1 � LT codes

LT codes [18] are the first class of universal fountain codes. These codes can potentially 
generate infinite encoded symbols through the XOR operation of a subset of original 
symbols. For every encoded symbol, a degree d is chosen independently from a given 
degree distribution. LT codes can recover k original symbols from any k(1+ ǫ) encoded 
symbols with probability 1− δ.where ǫ is known as overhead, the number of encoded 
symbols is equivalent to k + O(

√
k .ln2(k/δ)) and δ indicates the allowable failure prob-

ability of decoding. Belief propagation (BP) is used as an efficient decoding algorithm 
for these near-optimal codes which depends on degree-1 encoding symbols [19]. In 
LT code-based cloud storage system, a user file is first fragmented into k original sym-
bols, and then, these original symbols are encoded into n encoded symbols. We briefly 
describe the encoding and BP decoding procedure of LT codes for k = 4 and n = 5 in 
Figs. 1 and 2, respectively.

A number of original symbols that are combined together is known as code degree, 
which is designated from two common degree distributions. First, ideal soliton distribu-
tion (ISD) ρ(i) is defined as follows

(1)ρ(i) = ρ(1) = 1/k
ρ(i) = 1/i(i − 1) i = 1, 2, ..., k
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One of the main goals in the design of good degree distribution is the ripple size. Ripple 
is a set of covered original symbols that have not been processed yet. If all the original 
symbols are covered, retrieval is successful while the process fails when the ripple is not 
empty at the end of the retrieval. The ripple size should be kept as small as possible to 
prevent redundant coverage of original symbols. On the other hand, the ripple should 
be large enough to avoid the disappearance of the ripple until the end of the process. 
This ideal size is called the expected ripple size that is too small with ISD, also fragile 
confronting any variation. Although ISD performs weekly in practice due to its ripple 
expected size that is one, it provides great perception for new distributions. The main 
distribution of LT codes is robust soliton that is denoted by µ(i) . Let R = c.ln(k/δ)

√
k  

expected ripple size for some suitable constant c > 0 . Define

(2)τ (i) =







R/ik i = 1, ..., k/R− 1

Rln(R/δ)/k i = k/R
0 i = k/R+ 1, ..., k

Fig. 1  LT encoding process

Fig. 2  Belief propagation decoding
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Add ρ(i) to τ (i) and normalize to obtain µ(i)

With a good degree distribution, LT codes can perform well. Although robust soliton 
distribution ensures ripple does not disappear during decoding process with high prob-
ability and can achieve good performance for LT codes, newly introduced distributions 
can improve performance in terms of overhead and recovery probability which is con-
siderable, since cloud storage follows the “pay-as-you-use” paradigm.

3.2 � Poisson robust soliton distribution

By combining the characteristics of Poisson distribution (PD) and robust soliton dis-
tribution (RSD), recently introduced distribution [20] with appropriate parameters 
can generate more degree-1 compared with RSD. Thus, PRSD successful retrieval 
probability outperforms RSD in lower overhead. The improved PD (IPD) is given by

where � is a positive constant.
Then, the proposed PRSD is obtained as follows

PRSD provides lower average degrees and limited degrees in comparison with RSD. 
Thus, we can achieve cloud storage with faster retrieval and higher successful decoding 
probability in lower overheads.

3.3 � Combined Poisson robust soliton distribution

In order to reduce overhead and consuming the time of encoding and decoding pro-
cess, CPRSD proposed by combining IPD and RSD is as follows [21]

First, η(i) is obtained from a normalization of θ(i),

The CPRSD is represented as

where the range of a is located between 0 and 1.

(3)β =
k

∑

i−1

ρ(i)+ τ (i)

(4)µ(i) = (ρ(i)+ τ (i))/β i = 1, ..., k

(5)θ(i) =
{

1/2 i = 2

�
ie−�/i! i = 1, 3, ..., k

(6)�(i) = θ(i)+ τ (i)/

k
∑

i=1

θ(i)+ τ (i) i = 1, 2, ..., k

(7)η(i) = θ(i)/

k
∑

d=1

θ(i) i = 1, 2, ..., k

(8)�(i) = η(i).a+ µ(i).(1− a)
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4 � System model
To investigate the performance of LT codes with new distributions on a cloud stor-
age system, we consider a small-scale cloud with 15 storage nodes. First, we encode 
20 user data of various sizes with LT codes, and then, the distribution of encoded 
data is accomplished over cloud storage in regional and multi-regional storage modes 
[22]. In regional mode, data are distributed over a region with at least two availability 
zones, and region selection is based on minimum distance to data owner location. In 
the multi-regional mode that at least two regions are selected, we assume selection of 
the first region as the nearest one and random selection of the second region that can 
be equivalent to user options in cloud storage systems. To resemble the function of 
our system model to the reality of cloud storage system and also study retrieval time, 
we consider M/G/1 queue for every storage node [6] and a further M/G/1 queue for 
the head server to direct retrieval requests to corresponding nodes.

We inspect the successful decoding probability of LT code-based cloud storage with 
PRSD and CPRSD degree distributions in two state. The first one is a non-removal 
state of storage nodes, and the latter is a removal state to check the effect of inaccessi-
bility or failure of nodes. The general structure of our system model is shown in Fig. 3.

5 � Simulation results and discussion
5.1 � Parameter selection

In this paper, we study LT codes with k = {100, 250.500} . All simulations run in MAT-
LAB. The first step is selecting n, the number of encoded symbols that are required to 
recover original symbols with high probability. As shown in Table 1, obtained values 
of n corresponding to k in our system model are almost close to values derived from 
the empirical model for decodability in [17] and the term k + O(

√
k .ln2(k/δ)) [18].

Fig. 3  General structure of our LT code-based cloud storage
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At the second step, two main parameters of RSD and PRSD, c and δ are determined 
that play important roles in degree distributions achievement. We investigate how the 
factors c and δ affect the probability of successful retrieval to discover a mutually suit-
able pair for both RSD and PRSD. As illustrated in Figs. 4 and 5 for k = 250 , a higher 
successful decoding probability of RSD takes place within the range [0.1, 0.3] of δ and 
two values 0.08 and 0.1 for parameter c. In addition, better performance of PRSD can 
be observed for c = 0.08 and δ measures located in the range of [0.01, 0.1] . Thus, we set 
c = 0.08 and δ = 0.1 to reach the highest probable overall performance for both RSD and 
PRSD, which also stands for other values of k. The measure of failure decoding probabil-
ity δ is reasonable in practice.

Finally, a as a fundamental parameter of CPRSD is selected to represent the con-
tribution of IPD and RSD, in new degree distribution. Successful decoding probabil-
ity against a for different k and versus overhead for different a is displayed in Figs. 6 
and 7, respectively. As shown in Fig.  6, we can achieve higher successful decoding 
probabilities by the range [0.3, 0.5] of parameter a for various values of original sym-
bols. Since the variation of a has an effect on overhead as well as successful decod-
ing probability, a trade-off is discussed. The trade-off offers the highest possible 

Table 1  Required number of encoding symbols for successful decoding

k [17] k + O(
√
k.ln

2(k/δ)) Simulation

n

100 165 157 158

200 310 271 290

250 – 333 388

300 450 395 441

400 580 518 568

500 – 639 710

Fig. 4  Successful decoding probability with RSD for different c and δ
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probability of decoding, while the overhead is kept as small as possible. We set 
a = 0.4 to reach an acceptable compromise between overhead and successful decod-
ing probability, which means the additional contribution of RSD provides much 
improvement. Based on the analysis of expectations and similarity of mathematical 
properties of PD and BD when k < 20 , we consider � ≈ 3.04 [20].

Fig. 5  Successful decoding probability with PRSD for different c and δ

Fig. 6  Successful decoding probability with CPRSD for different k and a 
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5.2 � Theoretical analysis

As mentioned before, exploiting PRSD and CPRSD leads to faster retrieval and higher suc-
cessful decoding probability in lower overheads in comparison with RSD. We provide a few 
theoretical analyses of some indicators to prove our claims.

As RSD is the combination of ρ(i) and τ (i) , PRSD is constructed by θ(i) and τ (i) , also the 
combination of all these distributions generates CPRSD, average degree, degree-one, maxi-
mum degree, and the number of encoding symbols is studied approximately through the 
expectations of ρ(i) and θ(i) as follows.

First, one of the parameters which have an essential role in the retrieval process is the 
average degree. The average degree of encoding symbols should be as few as possible.

For RSD:

For PRSD:

Finally, the average degree of CPRSD is E(aθ(i))+ (1− a)ρ(i)) , and therefore,

where 0 < a < 1.
Based on the analysis mentioned in the article, we consider � ≈ 3.04 , so

(9)E(ρ(i)) =
k

∑

i=1

iρ(i) = 1/k +
k

∑

i=2

1/i(i − 1) ≤ 1/k +H(k)

(10)E(θ(i)) =
k

∑

i=1

iθ(i) = �e−� + 1+ �e−�

k
∑

i=3

�
i−1/(i − 1)! < 1+ �+ �e−�

(11)aE(θ(i))+ (1− a)E(ρ(i)) < a(1+ �+ �e−�)+ (1− a)(1/k +H(k))

(12)E(θ(i)) < 4.1854

Fig. 7  Successful decoding probability with CPRSD for k = 250 and different a 
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By increasing the number of original symbols k, the average degree of ρ(i) tends to H(k). 
As ln(k) < H(k) < ln(k)+ 1 , we have

In addition, for k ≥ 25

According to the terms stated above, for k = {100, 250, 500} the average degree of PRSD 
and CPRSD is smaller than RSD. Less average degree is equivalent to fewer XOR opera-
tions required in the encoding and decoding process that can be led to faster retrieval. 
Second parameter that shows the superiority of PRSD and CPRSD over RSD is the 
number of degree-one encoded symbols. PRSD and CPRSD provide a higher fraction of 
degree-one encoding symbols due to the nature of Poisson distribution with appropri-
ate parameter selection. Since the ripple is a set of degree-one encoding symbols in the 
decoding process, a large expected ripple size at the beginning of the process brings 
higher successful decoding probability when the decoder receives fewer encoding sym-
bols. The number of degree-one encoding symbols for three distributions are given, 
respectively,
µ(1) −→ ρ(1) = 1/k

�(1) −→ θ(1) = 1/2

�(1) −→ aθ(1)+ (1− a)ρ(1)

For k > 2

Also, ∀k > 2 , we have

In addition, we present a maximum degree that indicates PRSD and CPRSD which 
outperform RSD regarding better retrieval in lower overheads and time-consuming 
decoding process. Degree distribution tends to zero when the degree approaches the 
maximum degree that can be generated. To study a maximum degree, we define ǫ′ 
instead of zero which is considered small enough. For RSD,

As the degree is a positive integer,

By considering ǫ′ ≤ 0.001 , the maximum degree of RSD is obtained as

For PRSD,

Through Stirling’s approximation of lni! ≈ ilni − i ,

(13)∀k ≥ 25 E(θ(i)) < E(ρ(i))

(14)aE(θ(i))+ (1− a)E(ρ(i)) < E(ρ(i))

(15)θ(1) > ρ(1)

(16)aθ(1)+ (1− a)ρ(1) > ρ(1)

(17)1/i(i − 1) ≥ ǫ′

(18)i ≥ 1+
√

1+ 4/ǫ′/2

(19)imax ≥ 33

(20)e−�
�
i/i! ≥ ǫ′
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To reach the maximum degree, we exploit determining the sign of the above term. Since 
the degree i is a positive integer and the right expression is negative based on ǫ′ ≤ 0.001 
and � ≈ 3.04 , the left expression should be located between -1 and 0 to guarantee maxi-
mum degree and negativity.

Thus,

and imax = 22.
In the following for CPRSD, we exert the range of parameters a on the term below

As i! ≥ i(i − 1) , we determine the sign of denominator, and thus,

Also ǫ′ − 1/i(i − 1) should be negative, and therefore,

and imax = 32.
Thus, two new defined distributions provide a smaller maximum degree in comparison 

with RSD.
The last parameter to investigate is the number of encoding symbols. For LT codes with 

RSD, the number of encoding symbols is k + O(
√
k .ln2(k/δ)) [18] that is obtained from

By neglecting the terms corresponding to mutual distribution τ (i) , we have the number 
of encoding symbols for PRSD and CPRSD as follows

According to 
∑∞

i=0 �
i/i! = e�,

(21)i(ln�− lni + 1) ≥ �+ lnǫ′

(22)i ≤
�+ lnǫ′

ln�− lni + 1

(23)−1 < ln�− lni + 1 < 0

(24)9 ≤ i ≤ 22

(25)a(e−�
�
i/i!)− (1− a)(1/i(i − 1)) ≥ ǫ′

(26)0 <
ǫ′ − 1/i(i − 1)

e−��i/i! − 1/i(i − 1)
< 1

(27)∀i > 2.7342 e−�
�
i/i! − 1/i(i − 1) < 0

(28)3 ≤ i ≤ 32

(29)nRSD ≤ k + R.H(k/R)+ R.ln(R/δ)

(30)nPRSD = k .(

k
∑

i=1

θ(i)) = k .(�e−� + 1/2+
k

∑

i=3

�
ie−�/i!)

(31)k .(�e−� + 1/2+
k

∑

i=3

�
ie−�/i!) < k



Page 12 of 18Chakani et al. J Wireless Com Network         (2022) 2022:54 

As the maximum measure of �2e−�/2 that happens at � = 2 is near the probability of 
θ(2) , we have

Consider the number of encoding symbols for CPRSD as
(32)

nPRSD < nRSD

(33)nCPRSD = k .(a.

k
∑

i=1

θ(i)+ (1− a).

k
∑

i=1

ρ(i))

Fig. 8  Successful decoding probability for k = 100 in non-removal state

Fig. 9  Successful decoding probability for k = 250 in non-removal state
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Through the inequality acquired for nPRSD , we can easily reach the following expression

In conclusion, PRSD and CPRSD provide faster and more successful retrieval, while the 
decoder receives fewer encoding symbols. The numerical results in the next sections 
confirm our claims.

(34)
nCPRSD < nRSD

Fig. 10  Successful decoding probability for k = 500 in non-removal state

Fig. 11  Successful decoding probability for k = 250 in removal state



Page 14 of 18Chakani et al. J Wireless Com Network         (2022) 2022:54 

5.3 � Degree distributions comparison

In this section, we present the comparison of successful decoding probability against 
overhead, for RSD, PRSD, and CPRSD on a cloud storage system. Overhead is defined 
as follows

To study LT code-based cloud storage performance, we consider two phases through 
simulations due to the random nature of encoding and decoding of LT codes and also 
the validation of our results. One hundred repeats are set for the outer phase, while 
each outer phase experiences one hundred repeats of the inner phase. The outer phase 
includes a selection of encoded symbols degree, generating metadata, encoding by LT 
codes, and finally distributing over the cloud. Furthermore, the inner phase is assumed 
in every outer phase which encompasses users’ requests for various data from diverse 
geographical locations at random and data retrieval process. As shown in Figs. 8, 9 and 
10, for k = {100, 250, 500} and in the non-removal state of storage nodes increasing the 
number of original symbols, the performance of considered distributions becomes close 
together. RSD needs more overhead to retrieve successfully, which means much retrieval 
time and more storage space. Thus, successful decoding probability with CPRSD and 
PRSD outperforms RSD in particular at lower overheads.

We study the behavior of proposed cloud storage with three distributions in confront-
ing unavailability or loss of encoding symbols. The goal accomplished considering one 
data center is out of reach randomly in every simulating iteration. Figure  11 depicts 
the successful decoding probability for k = 250 in the removal state. Therefore, bet-
ter robustness and higher successful decoding probability can be achieved by applying 
CPRSD and PRSD for the various number of original symbols.

(35)ǫ = (n− k)/k

Fig. 12  Histogram of required number of encoding symbols for successful data retrieval for k = 250
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Successful data retrieval in lower overheads and also in the presence of partly 
encoding symbols loss is notable attainment in cloud storage systems. Furthermore, it 
could lead to less storage space, retrieval time, and cost of users and providers, hence 
more satisfactory services.

5.4 � Time improvement

We assume a scenario to compute data retrieval time. First retrieval time is defined as 
follows

Tw is queuing delay, the second term is data transmission time, and Tdecoding is the mean 
of decoding process time in simulations.

As mentioned before, we consider M/G/1 queue for every storage node and head 
datacenter. Our simulations run based on the following assumptions. In every itera-
tion, selection accomplishes randomly among 2, 4, 6ms for mean service time of data 

(36)Ttotal = Tw +
L

r
+ Tdecoding

Fig. 13  Successful decoding probability with proposed decoding process for k = 250 in removal state

Table 2  Retrieval time comparison between main and proposed decoding process

Retrieval time (second)

k RSD PRSD CPRSD

Main Proposed Main Proposed Main Proposed

100 0.4510 0.2530 0.2962 0.1606 0.4403 0.2488

250 4.7818 1.5613 1.9538 0.6583 3.9001 1.3413

500 9.7998 4.8760 5.0312 1.4730 14.5405 4.8298
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centers and among 1, 1.5, 2ms for variance. The mean arrival rate is assumed 5ms . 
Moreover, the arrival rate for the head data center is set to 10, and mean and variance 
of service time are considered as 1 and 3ms , respectively. The factor r is assumed 30.03 
Mbps, and rests on the global average download speed report for mobile Internet in 
2019 [23].

Generally, the LT decoder needs an undetermined number of encoded symbols from 
the storage system to retrieve data successfully. More delay arises from this ambiguity in 
LT code-based cloud storage systems. Thus, there is a compromise between successful 
decoding probability and retrieval delay. According to our observation during the decod-
ing process, the number of encoding symbols required for successful data retrieval fol-
lows normal distribution as shown in a histogram for k = 250 in Fig. 12. Since retrieval 
time is comparable to the user experience of cloud storage service, we design a scheme 
in which the decoding process is implemented for the number of encoding symbols lying 
within two standard deviations from the mean instead of blind search in the almost big 
interval. Figure 13 shows successful decoding probability against overhead after applying 
the proposed decoding process in the removal state.

As clearly seen, reduction in successful decoding probability is negligible in particu-
lar for PRSD and CPRSD, whereas time reduction is significant according to Table  2. 
Retrieval time using the proposed decoding process can be decreased up to 70 percent 
with PRSD and 67 percent with CPRSD.

6 � Conclusion
In this paper, we studied LT code-based cloud storage using newly designed degree dis-
tributions. Data retrieval achieves much success with PRSD and CPRSD compared with 
the conventional solution, RSD, specifically in smaller overheads, moreover in the pres-
ence of unavailability or loss of encoding symbols. Furthermore, we proposed a modified 
decoding algorithm in order to obtain retrieval time improvement. The performance 
analysis and experimental results show that the proposed LT code-based cloud stor-
age system can provide higher successful decoding probability, less storage space, more 
robustness, and faster data retrieval.
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