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1  Introduction
The purported success of multiple-input multiple-output (MIMO) systems is being con-
firmed since the fourth generation of mobile networks (4G) and continued to show its 
importance in recent deployments of the fifth generation of mobile networks (5G) tech-
nology. Early studies on the sixth generation of mobile networks (6G) also show MIMO 
systems as a key enabler for future wireless systems [1]. Its advantages over classical 
single-input single-output (SISO) systems are extremely attractive and relatively simple 
to understand from a theoretical standpoint [2, 3]: By increasing the number of service 
antennas, an overall increase in data throughput is obtained.

It was shown in [4] that detectors based on neural networks (NNs) have a com-
petitive performance when compared to the optimum maximum likelihood detec-
tor (MLD), while the former is more robust to imperfect channel estimations and 
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less complex than the latter. However, the system model in [4] considers a system. 
Recently, several works [5, 6] proposed solutions that attempt to integrate machine 
learning (ML) and NN to MIMO systems. One emerging solution involves adapting 
NN architectures according to model-driven detection algorithms, such that its itera-
tions are unfolded on NN layers. This solution is called deep unfolding [5, 7].

Therefore, in this work we propose a deep unfolded detector [8] based on the prob-
ability data association (PDA) detector [9] for MIMO systems. The main aim is to 
achieve the aforementioned advantages of data-driven detectors for SISO systems in 
MIMO systems, while advantageous features of the PDA detector [3] are maintained. 
To the best of authors knowledge, this is the first attempt at combining the deep 
unfolded architecture with the algorithm of the PDA detector for MIMO systems.

MIMO systems are also largely used for beamforming and beamsteering in the 
most recent mobile networks, where precoding can provide spatial multiplexing and 
improve the system performance without increasing the complexity on the receiver 
side [10]. It is clear that precoding will play an important role in future MIMO sys-
tems for mobile communications. Nevertheless, this work focuses on MIMO systems 
where multiple antennas transmit data over a rich scattering environment without 
considering precoding, relying on detection techniques that can resolve the inter-
antenna interference (IAI) with affordable complexity, a scenario where the PDA 
detector is an interesting solution [3].

1.1 � Contributions and paper organization

In this paper, we make the following contributions:

•	 We propose a novel combination of the data-driven deep unfolded detector and 
the PDA algorithm for signal detection in MIMO systems;

•	 Differently from other similar proposals [5, 6, 8], we employ the categorical cross-
entropy loss function and dispense with the use of optimal Gaussian denoisers;

•	 The computational complexity of the proposed detector is evaluated and com-
pared with the complexity presented by detectors of interest;

•	 A low-complexity variation of the deep unfolded PDA (DU-PDA) is also presented, 
its computational complexity being lower than the linear zero-forcing (ZF)detector;

•	 Numerical results from computational simulations compare the uncoded and 
coded error rates of the proposed detectors with other detectors under time-dis-
persive channels.

The remainder of this paper is organized as follows. In Sect. 2, we present the system 
model of the baseline orthogonal frequency division multiplexing (OFDM)-MIMO sys-
tem. Section 3 then introduces the problem of signal detection for MIMO systems and 
gives a brief description of the PDA detector and of the deep unfolding learning. This 
is followed by a description of the proposed DU-PDA and an analysis on the computa-
tional complexity of all detectors discussed throughout this paper. Next, in Sect. 4, we 
provide numerical results to evaluate the performance of all detectors studied in this 
paper, including the optimum MLD. Finally, Sect. 5 concludes the paper.
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1.2 � Notation

Throughout this paper, italicized letters (e.g., x or X) represent scalars, boldfaced lowercase 
letters (e.g., x ) represent vectors, and boldfaced uppercase letters (e.g., X ) denote matrices. 
The nth entry of the vector x is represented by x(n) . The entry on the ith row and jth column 
of the matrix X is denoted by Xi,j . The superscript x(n) denotes the nth instance of the vec-
tor x , such that X = {x(n)}∀n forms a collection of vectors or a dataset. The sets of real and 
complex numbers are represented by R and C , respectively. The absolute value of the scalar 
x ∈ R or the modulus of x ∈ C is denoted by |x| . The sets of vectors of dimension X with 
real and complex entries are, respectively, represented by RX and CX . The sets of matrices 
of dimension X × Y  with real and complex entries are correspondingly described by RX×Y  
and CX×Y  . The transposition operation of a vector or matrix is represented as (·)T . The ℓp
-norm, p ≥ 1 , of the vector x is given by �x�p =

(

|x(0)|p + |x(1)|p + · · · + |x(n− 1)|p
)1/p . 

The expected value of the random variable z is denoted by E[z] . The real and imaginary 
parts of z ∈ C are denoted by ℜ(z) and ℑ(z) . The estimate of a scalar x, a vector x or a 
matrix X is represented by x̂ , x̂ and X̂ , respectively. The number of elements in a set X  is 
given by #X  . Computational complexity is denoted by the asymptotic operator O(·).

2 � System model
Suppose that in a multiple antenna system we have Nt transmitting antennas and Nr receiv-
ing antennas, thereby constituting an Nt × Nr point-to-point baseband and fully digi-
tal MIMO system. Therefore, bits of data are demultiplexed into Nt substreams, which in 
turn are mapped to a sequence of complex symbols. These symbols are transmitted by its 
respective transmit antenna using an OFDM system, for which it is assumed that the cyclic 
prefix (CP) length is larger than the maximum delay spread for all NtNr channels. Finally, 
after performing the discrete Fourier transform (DFT) we have the following representation 
of the received baseband signal at the kth subcarrier:

Here, H̃k ∈ C
Nr×Nt is the matrix containing all channel frequency responses for the kth 

OFDM subcarrier; ãk ∈ C
Nt represents the symbol vector transmitted by the Nt transmit 

antennas on the kth subcarrier of the OFDM block and ñk ∈ C
Nr is the complex additive 

white Gaussian noise (AWGN) vector in the frequency domain at the kth subcarrier for 
the Nr receive antennas, with zero mean and covariance matrix given by σ 2INr.

For convenience, henceforth we make use of the real-valued representation [3, 8, 9] for 
systems. Therefore, let the received signal (1) be represented by the concatenation of its real 
and imaginary parts, such that

where

(1)r̃k = H̃k ãk + ñk .

(2)rk = Hkak + nk ,

(3)rk = ℜ(r̃k)
T
ℑ(r̃k)

T
T

∈ R
2Nr , ∀ k ,
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Moreover, we assume that ℜ(ãk) ∈ S
Nt and ℑ(ãk) ∈ S

Nt ; that is, the real and imaginary 
parts of ãk can take on different values from the finite set of coordinates pertaining to the 
square M-quadrature amplitude modulation (QAM) constellation. Hence, let 
S = {±E0,±3E0, . . . ,±(

√
M − 1)E0} , for E0 =

√

3
2(M−1)  , such that the constellation 

energy is normalized to 1 (unity).

3 � Detection in MIMO systems
A classical problem in the MIMO literature is to decide which symbols were transmitted 
by each antenna when only (2) is available at the receiver. This detection problem can 
be solved optimally, however at great computational effort, by the MLD for MIMO as 
follows

for which âk ∈ S
2Nt is the estimated vector of symbols’ coordinates.

It is known that the prohibitive complexity presented by the MLD motivated the 
research of several alternative detectors for MIMO throughout the last decades [3]. The 
PDA detector is one of these alternatives that presents significantly lower complexity 
when compared with the MLD, with an affordable bit error rate(BER) performance loss 
under specific conditions, as will be detailed in Sects. 3.5 and 4. In Sect. 3.1, the PDA 
detectors’ algorithm first proposed in [9] is briefly revisited, followed by our proposed 
DU-PDA, for which the PDA is the underlying algorithm.

3.1 � Probability data association detector

Before the detection task is carried out by the PDA detector, the received signal, rk , is 
preprocessed or equalized using the ZF principle as follows [2, 3, 9]

wherein H†
k = (HT

k Hk)
−1HT

k  is the left Moore–Penrose pseudoinverse and vk = H†
knk is 

the enhanced AWGN. Let us rewrite (8), such that

(4)Hk =

[

ℜ(H̃k) − ℑ(H̃k)

ℑ(H̃k) ℜ(H̃k)

]

∈ R
2Nr×2Nt , ∀ k ,

(5)ak =

[

ℜ(ãk)
T
ℑ(ãk)

T

]T

∈ R
2Nt , ∀ k ,

(6)nk =

[

ℜ(ñk)
T
ℑ(ñk)

T

]T

∈ R
2Nr .

(7)âk = arg min
ak∈S

2Nt

�rk −Hkak�
2
2,

(8)zk = H†
krk = ak + vk ,

(9)
zk = eiak(i)+

∑

j �=i

ejak(j)+ vk

︸ ︷︷ ︸

Vi

, ∀ i, j ∈ {0, 1, . . . , 2Nt − 1},
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where ei is the vector with 1 (one) at its ith entry and 0 (zero) otherwise, and Vi is a mul-
tivariate random variable (RV) that can be seen as the effective interference-plus-noise 
contaminating ak(i) [9]. Therefore, the crux is at detecting the symbol transmitted by the 
ith antenna, while considering that all other j  = i transmitted symbols are interference 
added to the noise term, which is described by Vi.

Therefore, the PDA detector associates, for each ak(i) , a probability vector pi ∈ R

√
M , 

which is given by the evaluation of Pm(ak(i) = q(m) | zk , {pj}∀j �=i) ; q(m) ∈ S being a 
coordinate of the M-QAM constellation and m ∈ {0, 1, . . . ,

√
M − 1} . It is important 

to remark that the PDA detector uses all {pj}∀j �=i associated with interfering symbols 
already detected, thanks to the incorporation of a strategy similar to that of successive 
interference cancellation (SIC) detectors. This significantly reduces the computational 
complexity for calculating pi , since otherwise Pm(ak(i) = q(m) | zk) would have to be 
evaluated. The problem here is the requirement of computing multiple integrals for each 
received symbol, rendering this evaluation prohibitive in practice. Dropping the sub-
script (·)k in order to simplify the notation and assuming that Vi has a Gaussian distribu-
tion [9, 11], then the likelihood function of z | a(i) = q(m) can be defined as

for which

wherein E[Vi] = µi and COV[Vi] = �i are given by

where q = [q(0) q(1) . . . q(
√
M − 1)]T and G−1

= (HTH)−1 is the inverse of the Gram 
matrix [2] that accounts for the noise enhancement caused by the ZF. To evaluate the 
posteriors probabilities associated with each symbol, we compute

which can be seen as an approximate form of the Bayesian theorem [11]. Then, substi-
tuting (10) into (14) yields

Finally, the PDA detector procedure is given in Algorithm 1.

(10)Pm(z | a(i) = q(m)) ∝ exp (αm(i)),

(11)αm(i) =
(

z − µi − 0.5eiq(m)
)T

�−1
i eiq(m),

(12)µi =

∑

j �=i

ej

(

qTpj

)

,

(13)�i =

∑

j �=i

eje
T
j

(

(

q2
)T

pj − µ2
j

)

+ 0.5σ 2G−1,

(14)
Pm(a(i) = q(m) | z, {pj}∀j �=i) ≈

Pm(z | a(i) = q(m))
√
M−1
∑

m=0

Pm(z | a(i) = q(m))

,

(15)
pi(m) =

exp (αm(i))
√
M−1
∑

m=0

exp (αm(i))

.
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Note that the optimal detection sequence [9] used in Algorithm 1 can be found with 
the aid of the following operation:

where fTi  represents the ith row of F = H† and hj denotes the jth column of H . Note 
that larger magnitudes for ρ(i) mean that the ith antenna suffers less IAI [3]. In other 
words, the off-diagonal entries of the ith row from FH have, combined, smaller mag-
nitudes than its ith diagonal entry. It is easy to show that the optimal sequence is 
defined by sorting ρ = [ρ(0) ρ(1) . . . ρ(2Nt − 1)]T in a descending order, denoted as 
{ki ∈ {1, . . . , 2Nt} | ρ(k0) > ρ(k1) > . . . > ρ

(

k2Nt

)

}.

3.2 � Deep unfolding

Prior to presenting our proposed DU-PDA detector, a brief description of NNs and deep 
unfolding is provided in this section.

In general, the NN architecture has shown great potential for detecting signals, but 
its design and parameterization, among other problems, impose limitations [4]. Alter-
natively, this architecture can be adapted such that iterations of an given algorithm are 
unfolded on its layers [5, 6, 12], hence the term “unfolding.” It is also commonly assumed 
that the NN employs several layers and, consequently, the term “deep” is added.

More specifically, consider an algorithm with an input vector denoted by x ∈ R
N , for 

which its output is given by y ∈ R
S , then this algorithm can be expressed by [12]

(16)ρ(i) =
1

fTi Hfi
max







0, fTi hi −
�

j �=i

|fTi hj|







2

,

(17)y(s) = g(x,ψ ,�), ∀ s ∈ {0, 1, . . . , S − 1},
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wherein � is the set of all parameters used by the algorithm, g(·) represents a mapping 
function, usually nonlinear, and ψ is iteratively updated as follows

where the ℓ th iteration also involves an operation with a mapping function f (·) and ψ0 
denotes the initial value.

Therefore, in the deep unfolded context, ψℓ can be understood as the input-output 
relationship at the ℓ th layer of a NN architecture, as illustrated in Fig. 1.

Note that dimensions of learnable parameters � are defined according to the underly-
ing algorithm after which (17), (18) and the architecture depicted in Fig.  1 are based. 
This includes weights and bias, for example, which are optimized by the NN training 
algorithm [4, 12]. In other words, this means that the number of layers and neurons is 
fixed, thereby simplifying considerably the process of defining what is commonly known 
as the NN hyperparameters.

Moreover, improvements are also obtained by using the aforementioned learnable 
parameters directly into the iterative algorithm. That way, learning capabilities of NNs 
can be applied for optimizing algorithms such that its global performance, computa-
tional complexity, or even both, are improved. In Sect. 3.3, the PDA detector, reviewed 
in Sect. 3.1, is implemented using the deep unfolded architecture for NNs, unveiling our 
proposed DU-PDA detector for MIMO systems.

3.3 � Proposed deep unfolded PDA detector

Aiming to take advantage of the iterative algorithm of the PDA detector, we propose the 
DU-PDA detector. Firstly, in the DU-PDA detector, the received signal, r , is preproc-
essed at the ℓ th layer by the following operation [8]; [13, §IV-B, p. 1706]

where âℓ ∈ R
2Nt is the estimated transmitted symbol vector and the scalar wℓ ∈ R rep-

resents a learnable parameter. Note that this preprocessing principle differs from the 
ZF, which is used by the PDA detector, as defined in (8). In contrast, for the proposed 

(18)ψℓ(s) = f (x,ψℓ−1(s),�),

(19)zℓ = âℓ + wℓH
T
(

r −Hâℓ

)

, ∀ ℓ ∈ {0, 1, . . . , L− 1},

Fig. 1  Deep unfolding architecture. It is based on an underlying algorithm with an input vector given by x 
and an output determined by y . Each hidden layer unfolds the ℓ th iteration of this algorithm and its input–
output relationship is expressed by (18), whereas the output layer is represented by (17)
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DU-PDA, it is employed a preprocessing based on the approximate message passing 
(AMP)algorithm [14], which also bear similarities with the Richardson method [2, §IV-6, 
p. 9]. In this way, âℓ is updated iteratively until it converges to an acceptable approxima-
tion of the transmitted symbol vector. Interestingly, when we have âℓ → a , then the so-
called residual term 

(

r −Hâℓ

)

→ n , which give us a result in (19) similar to (8).
The preprocessed signal of (19) is then fed into the following operation1:

where

Note that the nonlinear function softm(·) is applied at each layer. This makes (20) identi-
cal to (15) except that it is unfolded on successive layers and that ψ j = pj . Notably, this 
also distinguishes the proposed DU-PDA from other architectures [5, 8, 13] that use 
instead optimal denoisers at each layer, which do not account for interfering symbols as 
the underlying PDA algorithm of the DU-PDA does. Moreover, since the preprocessing 
is modified, then it is necessary to redefine the covariance matrix, �ℓ∗ , as follows [15, 
§III-D, p. 2023], [8]

where

wherein [x]+ = max (0, x) and for which

Equation (23) can be understood as the empirical mean-squared error (MSE) estima-
tor of the covariance matrix originated from the residual and noise terms of (19). More 
importantly, note that �ℓ∗ is now a diagonal matrix. This means that computing �−1

ℓ∗  is 
not as costly as its counterpart in (11), that is, in the PDA detector. More details about 
such implications are given in Sect. 3.4.

Therefore, by considering developments presented in this subsection and the general 
model described in Sect. 3.2, we have

(20)
ψℓ∗(m) = softm

(

(

zℓ − µℓ∗ − 0.5eℓ∗q(m)
)T

�−1
ℓ∗ eℓ∗q(m)

)

∀m ∈ {0, 1, . . . ,
√
M − 1},

(21)softm(xℓ(m)) =
exℓ(m)

∑L−1
m=0 e

xℓ(m)
.

(22)�ℓ∗ =

∑

j �=ℓ∗

eje
T
j

(

(

q2
)T

ψ j − µ2
j

)

+ eℓ∗e
T
ℓ∗COV[zℓ − a],

(23)COV[zℓ − a] =
[ǫℓ]+�I2Nt − wℓH

TH�
2
2 + 0.5σ 2

�wℓH
T
�
2
2

2Nt
,

(24)ǫℓ =
�r −Hâℓ�

2

2
− Nrσ

2

�H�
2

2

.

(25)ψℓ∗+1(m) = softm
(

zℓ,ψℓ∗(m), {wℓ,µℓ∗ ,�ℓ∗}
)

,

1 
{ℓ∗ ∈ {0, 1, . . . , 2Nt − 1}, k ∈ {1, 2, . . . , ⌈L/2Nt⌉ − 1} | ℓ∗ = ℓ− k2Nt; k2Nt ≤ ℓ < (k + 1)2Nt}
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which is similar to what is evaluated in (15) with the addition, however, of a learnable 
parameter and a different preprocessing of the received signal. Note also that ψL = y , 
meaning that the last layer output is also given by (25). Furthermore, let

such that the convergence of (19) might be improved, given that the soft combining of 
symbols’ coordinates and their estimated associated probabilities are fed forward to the 
next layer.

In Algorithm 2,

we detail the general procedure carried out by the proposed DU-PDA detector.
The ground truth used for training the NN is defined by 

Iℓ∗ = [I(0) I(1) . . . I(
√
M − 1)]T , such that I = {Iℓ∗}∀ℓ∗ . It indicates the known 

constellation coordinates that are transmitted for the training procedure; thus, 
Iℓ∗(m) ∈ {0, 1} ∀m . Observe also that the PDA detector outputs approximate posteri-
ors, as shown in (15), which is leveraged by our proposed DU-PDA detector in Algo-
rithm 2 when employing the categorical cross-entropy loss function:

(26)âℓ+1 =

∑

j �=ℓ

ejzℓ

(

j
)

+ eℓ

(

q
Tψℓ∗

)

,
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Bear in mind that the loss is calculated considering the output of all L unfolded lay-
ers and not only the last one. Also, note that the use of (27) contrasts with the popular 
choice of the MSE loss function [5]. Additionally, it is a well-known fact that the cross-
entropy loss function is more appropriate for classification tasks.

3.4 � Simplified DU‑PDA

The model of the DU-PDA presented in the previous subsection can be simplified even 
further if some assumptions are made. Therefore, a new variation of the proposed DU-
PDA detector, namely the simplified DU-PDA detector, is presented in this subsection. 
For this detector, the calculations performed in (23) are simplified and the scalar 0.5σ 2 is 
applied directly in (22). The reasoning behind this approach lies in the asymptotic case, 
that is, when Nt → ∞ and Nr → ∞ . For this case, the first term of (23) vanishes, since2

and similarly for the second term we have

which yields

wherein, for the sake of simplicity, the learnable parameter wℓ is omitted. This is analo-
gous to the channel hardening effect present in massive MIMO systems [2, 3], where 
values for Nt and Nr are large. Although we demonstrate via computational simulations 
in Sect. 4 that the simplified DU-PDA only presents marginal losses in performance, it 
is still unknown if other similar architectures proposed in the literature [5, 6, 8, 13] are 
robust enough to allow such simplifications.

3.5 � Computational complexity

According to the guidelines presented in [4, §IV-C, p. 122404], the global computation 
complexity of the PDA detector is approximately given by

However, if we let Nr ≫
√
M and simplify constants, then it can be written more com-

pactly as

(27)L(I ,ψ) =
−1
√
M

∑

ℓ∗

Iℓ∗ log
(

ψℓ∗
)

+ (1− Iℓ∗) log
(

1− ψℓ∗
)

.

(28)HTH → I2Nt ,

(29)�wℓH
T
�
2
2 → 2Nt,

(30)
COV[zℓ − a] →

[ǫℓ]+�I2Nt − I2Nt�
2
2 + Ntσ

2

2Nt

→ 0.5σ 2,

(31)O(16N 4
t + 8

√
MN 3

t + 8N 2
t (Nr +

√
M)+ 4NtNr).

(32)O(N 4
t +

√
MN 3

t + N 2
t Nr + NtNr).

2  We adopt the normalization of the channel matrix by 1/
√
Nr as detailed in Sect. 4.
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Note that O(8N 3
t + 16N 2

t Nr + 4NtNr) refers to the local cost of (8), where the inverse of 
G costs O(8N 3

t )
3 and O(16N 4

t + 8
√
M(N 3

t + N 2
t )) is the complexity due to computing 

(11), for which �−1
i  costs O(8N 3

t ) [9] per outer iteration in Algorithm 1.
Moreover, the DU-PDA detector has an approximate global complexity of

Consider again that all constants are simplified and that Nr ≫
√
M is simplified (33) to

The global complexity is composed mainly by the local cost of (19), given by O(8NtNr) 
per layer, and the local cost of (23), expressed by O(4N 2

t + 8NtNr + Nr) for each layer4. 
The NN training stage cost is not taking into account when calculating the computa-
tional complexity of the detection stage, since the training stage is assumed to be com-
puted offline as discussed in [4]. Nevertheless, in general, the backpropagation algorithm 
used for training NNs has a complexity that scales linearly with the number of training 
samples, NTR , and training iterations, say NTI . More importantly, it scales exponentially 
with the number of layers L because of the chain rule derivatives calculated during back-
propagation. In principle, this is a high complexity when compared with the detection or 
forward-pass complexity, but once trained, the NN-based detector may serve multiple 
users during a prescribed timeline [16]. This means that the training complexity cost is 
distributed over time and users, whereas the detection complexity is fixed for each user 
and transmission cycle. Hence, since training is not performed in the detection cycle, its 
complexity is not considered, enabling a fair comparison with other detectors.

Furthermore, recall that the simplified form of calculation demonstrated by (30) 
reduces even further the global complexity of the proposed DU-PDA detector. More 
specifically, the global complexity of the simplified DU-PDA detector is given approxi-
mately by O(LNtNr) , meaning that the cost is reduced to one order-of-magnitude when 
compared to the DU-PDA detector.

From the computational complexity associated with each detector, it is possible to 
conclude that the PDA is more complex than the proposed DU-PDA. More specifi-
cally, this cost difference is due to the higher-order term N 4

t  , included in the PDA global 
complexity. This is expected because of the inversion of matrices performed by the PDA 
detector, which are not necessary for both the DU-PDA and simplified DU-PDA detec-
tors. Also, notice that for both of these detectors, the total number of layers L might sig-
nificantly increase its global complexity. It is demonstrated in Sect. 4, however, that this 
number is a multiple of Nt , thus still implying in a lower global complexity for the DU-
PDA when compared to the PDA. In fact, the simplified DU-PDA complexity becomes 
even lower than that of the ZF in the aforementioned case. Additionally, an optimal 
detection sequence, such as (16), is not a general requirement for the DU-PDA, which 
further reduces its global complexity in relation to the PDA.

(33)O(4LN 2
t + 4LNt(4Nr +

√
M)+ LNr).

(34)O(LN 2
t + LNtNr + LNr).

3  For the sake of brevity, we assume that the inverse of a matrix, say X ∈ R
N×N , is computed by the well-known Gaussian 

elimination, whose cost is approximately O(N3).
4  Note that the squared norm of a matrix X ∈ R

M×N can be written as �X�22 =
∑

∀i

∑

∀j X
2
i,j ; thus, its cost is O(MN).
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Despite shedding light on how detectors’ computational complexity compares to each 
other, these are only asymptotic predictions of complexity. A detailed evaluation of sys-
tem end-to-end latency [17, 18], for example, is out of scope in this work. However, it 
can be verified for a typical 4 × 8 MIMO considered in Sect. 4, that the symbol detec-
tion (see Line 15 of Algorithm 2) of the DU-PDA takes approximately 50 milliseconds 
in average with neglectable variance. Note that this time value heavily depends on the 
implementation of the proposed detector, which in this work is based on the Tensor-
Flow library [19] not yet optimized for a full-fledged hardware implementation. Indeed, 
implementations using hardware description language (HDL) can provide a more reli-
able analysis on the end-to-end latency of the proposed detector.

For convenience, Table  1 summarizes the global computational complexity for all 
detectors of interest. Observe that the AMP detector and the sphere detector (SD) are 
also included for the sake of completeness. For the AMP, NI refers to the number of 
iterations or updates executed, whereas for the SD we considered the fixed-complexity 
SD [3, §VIII-D, p. 20], since its performance is near-optimum. To conclude, note also 
in Table 1 how the complexity of all detectors increases polynomially with the number 
of transmitting antennas Nt . The exceptions, however, are the MLD and the SD, whose 
complexity increases exponentially with Nt and 

√
Nt , respectively, as expected.

4 � Numerical results and discussion
Before presenting numerical results about the detectors performances, we list important 
system parameters in the following subsection.

4.1 � System parameters

In this work, the following system parameters are adopted: (i) Before transmission, a 
frame of nb data bits is encoded using the polar encoder [20] with a code rate of R < 1 . 
Thus, nb/R bits now represent the coded frame that is effectively transmitted; (ii) entries 
of the channel frequency response matrix, H , are drawn from a complex Gaussian ran-
dom process for all k subcarriers at each transmission of an OFDM frame and are nor-
malized by 1/

√
Nr . Hence, we have Hi,j ∼ CN (0, 1/Nr), ∀ i, j and, consequently, the 

system signal-to-noise ratio (SNR) per bit can be expressed as follows

Table 1  Global computational complexity of detectors studied in this work. Note that they are 
given in the most compact form and are also ranked in an ascending order, that is, from less to more 
costly as lines progress to the bottom of the table

Detector Global Computational Complexity

Simplified DU-PDA O(LNtNr)

Approximate Message Passing (AMP) O(NINtNr + NINt

√
M)

Zero-Forcing (ZF) O(N3
t + N

2
t Nr + NtNr)

Deep Unfolded PDA (DU-PDA) O(LN2
t + LNtNr + LNr)

Probability Data Association (PDA) O(N4
t +

√
MN

3
t + N

2
t Nr + NtNr)

Sphere Detector (SD) O(M
√
Nt )

Maximum Likelihood Detector (MLD) O(MNt (NtNr + Nr))
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which is henceforward assumed to be identical for all subcarriers.
The BER is employed for measuring coded detectors’ performances, which is obtained 

by averaging bit decision errors over multiple Monte Carlo experiments. Each experi-
ment is generated using a computational simulation that involves: (i) the generation 
of nb = 256 equiprobable data bits; (ii) the encoding of data bits by the polar encoder, 
resulting in a codeword of 256R  bits; (iii) mapping of coded bits into complex symbols 
Qak ∈ S

Nt for all k subcarriers; (iv) transmission of the OFDM frame; (v) the generation of 
normalized channel coefficients to form entries of the channel matrix Hk ; (vi) the gener-
ation of complex AWGN samples present in the receiver; (vii) the final decision in favor 
of the symbol coordinate associated with the higher probability value; and (viii) the sub-
sequent decoding of decided symbols into bits via the polar decoder [21]. More specifi-
cally, we implement a tree-based architecture of a successive cancellation list decoding 
[22], with code rate equal to R.

For the sake of brevity, some algorithmic procedures5 were omitted from Algorithm 2. 
However, it is worth mentioning that the DU-PDA training is performed considering 
that SNR values are drawn from a uniform distribution U ∼ [min(SNR), max(SNR)] , as 
discussed in [4, §VI-A, p. 122405]. Additionally, it was decided heuristically to use a total 
number of NTR = 105 samples for training and also that the DU-PDA should include 
L = 4Nt layers6. More details about the proposed DU-PDA hyperparameters can be ver-
ified in Table 2. These parameters are used for all scenarios demonstrated in Sect. 4.2.

Furthermore, note that in this work we employ hard decoding for all detectors ana-
lyzed. However, in principle, soft decoding could also be integrated to the proposed 
DU-PDA since soft outputs are available via (25) [11]. Nonetheless, for the pro-
posed DU-PDA, the hard decoding approach attains a better performance-complexity 

(35)Ŵk =

(√
MR

)−1 E
[

�Hkak�
2
2

]

Nrσ 2
, ∀ k ,

Table 2  Hyperparameters of interest for the proposed DU-PDA

Hyperparameters Values

Training set size 105 samples

Layers L = 4Nt

Input dimension R
2Nr , R2Nr×2Nt , R2Nt×

√
M , R2Nt

Output dimension R
2Nt×

√
M

Number of

learnable #{wℓ}∀ℓ = 4Nt

parameters

Activation function softmax(·), ∀ℓ

Learning rate 10−3

Solver Adam

5  As mentioned earlier, we used the TensorFlow library [19] to implement a customized deep unfolded NN model. The 
implementation code can be found at https://​github.​com/​Pedro​Souza-​INATEL/​DU-​PDA-​coded.​git.
6  It was verified that the PDA algorithm converges within an average of 2 convergence iterations in Algorithm 1 (with 
ǫ = 10−3 ), for all scenarios of interest. Therefore, there is no loss of generality when comparing both detectors costs in 
the context of results presented in this section.

https://github.com/PedroSouza-INATEL/DU-PDA-coded.git
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trade-off, which is more aligned with the general aim of the work of proposing a low-
complexity detector with affordable performance losses. This also allows for a fair com-
parison with algorithms that provide hard decoding sequences.

4.2 � Performance results

Figure  2 brings the uncoded detection performance for all detectors presented in 
Table 1, considering a square 4 × 4 MIMO (Fig. 2a) system and a underloaded [3] 4 × 8 
MIMO (Fig. 2b), all of which employ the quadrature phase shift keying (QPSK) ( M = 4 ) 
modulation.

The detection performance is given as a function of multiple SNR values, and it is 
defined as the probability of occurrence of any error in the received symbol vector. This 
is done because bits are not encoded for the scenarios analyzed in Fig. 2.

Firstly, observe in Fig.  2a that the performance of the PDA detector adheres closely 
with that reported in the seminal work of [9], thus validating the simulation model. 
Moreover, notice that the DU-PDA detector has shown a prohibitive performance 
for the 4 × 4 MIMO scenario, which was also verified to be the case for other square 
MIMO systems. However, for the underloaded scenario demonstrated in Fig. 2b, where 
Nr ≫ Nt , the DU-PDA detector presents better performance. All the same, if the rela-
tive performance of the DU-PDA against the ZF and, particularly, the AMP detectors is 
taken into account, then Fig. 2a and b shows that the DU-PDA outperforms these detec-
tors for most of the SNR range analyzed, while presenting a comparable detection com-
plexity7. It was verified, however, that for the underloaded scenario of 4 × 8 MIMO, the 
DU-PDA detector reaches a performance floor of P

(

â �= a
)

≈ 3× 10
−3 , from which no 

improvement can be obtained irrespective of how high are the SNR values.

0 4 8 12 16
10−4

10−3

10−2

10−1

100

10 log (Γ) (dB)

P
(â

=
a)

−4 −2 0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

10 log (Γ) (dB)

Zero Forcing AMP DU-PDA PDA Maximum Likelihood Sphere Detector

MIMO 4× 4, QPSK

(a)

MIMO 4× 8, QPSK

(b)

Fig. 2  Performance of the ZF, AMP,DU-PDA,PDA, MLD and SD detectors for the uncoded Nt × Nr MIMO 
system. The performance metric is the probability of symbol vector error, P

(

â �= a
)

 , which is given as a 
function of a range of SNR values. The scenario of a 4× 4 MIMO is illustrated, followed by the b 4× 8 MIMO, 
both considering the QPSK modulation

7  Note here that we consider L = 4Nt as stated in Sect. 4.1, making N3
t  the highest-order term within the DU-PDA com-

plexity. Additionally, we also considered NI = 50 [8, §IV-A, p. 5] for the AMP detector, which clearly implies NI ≫ Nt 
and, consequently, also a highest cubic-order polynomial.
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This motivated the integration of the Polar encoder as described in Sect. 4.1, also with 
a aim at potentially improving the proposed DU-PDA performance relative to other 
detectors. Note in Fig. 3a that the 4 × 8 MIMO scenario is illustrated again as in Fig. 2, 
however, considering now the Polar encoding with a code rate of R = 1/2.

This is accompanied in Fig. 3b, for which the 4 × 16 MIMO scenario with a 16-QAM 
( M = 16 ) modulation is presented, considering the same aforementioned code rate.

We begin by pointing out that the performance floor observed in Fig.  3a and b, 
although undesirable, is not so much detrimental to the overall performance as in 
Fig. 2b. This happens because the introduced channel coding improves the performance 
for all the SNR range under analysis. Therefore, the BER values where the DU-PDA is 
better than the ZF and AMP consist of the more interesting region of values for which 
SNR < 10 (dB). It is granted that the performance floor is still presented in Fig. 3a and 
b, but now at low values of BER ≈ 2× 10−4 and BER ≈ 2× 10−5 , respectively. These 
observations support the conjecture that the uncoded DU-PDA detector is interfer-
ence limited for high SNR values. In this SNR range, the distribution of (19) ceases to be 
approximately Gaussian because of the low AWGN levels and becomes defined in most 
part by the non-Gaussian IAI distribution. This in turn violates the Gaussian distribution 
assumption mentioned in Sect. 3.1, regarding the PDA detector, which is the underly-
ing algorithm of the proposed DU-PDA detector. Hence, we have the performance floor 
shown in Fig. 2b, but which is partially mitigated by a robust coding scheme in Fig. 3. 
Furthermore, to elaborate on the detection performance of the AMP detector in Figs. 2 
and 3, one can see that this detector suffers from a severe performance floor for high 
SNR. This behavior is also explained by the reasoning described for the DU-PDA, which 
means that the violation of the Gaussian distribution assumption also severely affects 
the AMP detection performance [23].

Moreover, note also that Fig. 3 depicts the detection performance of the simplified 
DU-PDA detector. For this detector, the calculations performed in (23) are simpli-
fied, yielding (30). Although the dimensions of MIMO systems illustrated in Fig. 3 are 
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Fig. 3  Performance of the ZF, AMP, simplified DU-PDA, DU-PDA, PDA and MLD detectors for the coded 
Nt × Nr MIMO system. Here, the performance metric is the BER, which is given as a function of a range of SNR 
values. The scenario presented is of the a 4× 8 MIMO with a code rate of R = 1/2 and QPSK modulation, 
followed by the b 4× 16 MIMO also with R = 1/2 and considering now the 16-QAM modulation. Note that 
we have omitted the SD curves here because it achieves the MLD performance
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not large, numerical BER results presented here show that conclusions from Sect. 3.4 
may still hold for a small number of antennas. Note in Fig. 3 that the detection per-
formance of the simplified DU-PDA detector is practically identical to the DU-PDA 
detectors’ performance, except at the high SNR region where the simplified DU-PDA 
is marginally worse than the DU-PDA detector.

Finally, note also that the simplified DU-PDA complexity becomes even lower than 
that of the ZF and AMP detectors, especially when the number of L = 4Nt layers used 
is considered. This makes the simplified DU-PDA detector the less costly of all detec-
tors analyzed in this work, as can be verified in Table 1. Yet it performs approximately 
2 dB better than the ZF in Fig.  3a, for values of SNR < 10 (dB), for example. More 
importantly, the simplified DU-PDA largely improves upon the performance of the 
AMP detector, in spite of using similar operations as described in (19).

Additionally, Fig. 4a
shows the performance of relevant detectors for the 8× 16 MIMO scenario con-

sidering the QPSK modulation. Figure 4b in turn illustrates detectors performances, 
also considering the QPSK modulation, for multiple values of transmitting antennas, 
Nt , for which the number of receiving antennas, Nr = 12 , and the SNR = 7 (dB) are 
fixed. Note that for this scenario we still assume the number of layers, L, of the DU-
PDA detector, to be restrained by Nt , such that L = 2cNt . This is adopted since each 
layer in the DU-PDA architecture outputs the posterior associated with one transmit-
ted symbol, a by-product of the underlying PDA algorithm employed by the DU-PDA 
detector. However, we verified through experiments that for c > 2 no improvement 
was obtained in detection performance, yet at the cost of increased training and 
detection complexity. Therefore, the value L = 4Nt defined in Sect. 4.1 was shown to 
be the most suitable one.

In Fig. 4a, it can be observed with the larger MIMO system that the proposed sim-
plified DU-PDA detector outperforms the ZF detector, particularly for the low BER 
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Fig. 4  Performance of the ZF, simplified DU-PDA and PDA detectors for the coded (code rate of R = 1/2 ) 
MIMO system. The performance given in terms of BER values is plotted against a range of SNR values for 
the a 8× 16 MIMO, and as a function of multiple values for the number of transmitting antennas when 
considering the b Nt × 12 MIMO scenario. All scenarios presented consider the QPSK modulation. The 
remaining detectors described in Table 1 are not analyzed either because their performance is too prohibitive 
or identical to the performance of detectors already shown here
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< 10−3 region. It is important to remark that for higher values of SNR the perfor-
mance floor of the coded simplified DU-PDA is still present, remaining, however, at 
low BER values of approximately 10−5 . Moreover, note that the simplified DU-PDA 
performance becomes worse relative to the PDA detectors’ performance as the SNR 
values get higher, but recall that the simplified DU-PDA presents the lowest com-
plexity (see Table 1). In addition to that, Fig. 4b shows that the simplified DU-PDA 
detector performance varies approximately linearly with the number of transmitting 
antennas Nt , while the performance of the ZF detector changes more abruptly with 
Nt . This means that the proposed simplified DU-PDA detector not only outperforms 
the more complex ZF, but it is also more robust for all considered MIMO system 
dimensions, assuming a target BER of 10−3.

5 � Conclusion
In this work, we proposed a detector for MIMO systems based upon the deep unfolded 
architecture for NNs, namely the DU-PDA detector. This detector unfolds iterations of 
the PDA algorithm in its layers, enhancing the model-driven PDA detector with the aid 
of its data-driven architecture.

It was shown that the DU-PDA detector, as well as its simplified form, outperforms 
both the AMP and ZF detectors, considering most of the SNR range evaluated. This can 
be particularly verified, for instance, in coded detection for the 8× 16 MIMO system. 
However, the global computational complexity of the simplified DU-PDA detector is 
orders-of-magnitude less than the ZF detector. Furthermore, the lack of matrix inverses 
computations in the DU-PDA architecture not only reduces its cost, but also simplifies 
its implementation in practical systems. This is the case when, for example, channels 
are correlated, increasing the condition number of G and making impractical its inverse 
computation.

For future research endeavors, it would be interesting to increase the scenarios and 
dimensions of MIMO systems analyzed, by increasing the number of transmitting and 
receiving antennas, also evaluating practical underloaded and square MIMO systems 
alike. Moreover, the integration of soft decoding to the proposed DU-PDA can improve 
its performance and can be regarded as a natural progression of the research done in 
this work. The applicability of the proposed detector in MIMO systems that employ pre-
coding is also an interesting research topic for future works. Finally, given the flexibility 
of the deep unfolding architecture, we maintain that other MIMO detection schemes 
could benefit greatly from the principles laid out in this work, becoming thus a promis-
ing topic for future research.
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