Skip to main content
  • Research Article
  • Open access
  • Published:

Survey of Channel and Radio Propagation Models for Wireless MIMO Systems

Abstract

This paper provides an overview of the state-of-the-art radio propagation and channel models for wireless multiple-input multiple-output (MIMO) systems. We distinguish between physical models and analytical models and discuss popular examples from both model types. Physical models focus on the double-directional propagation mechanisms between the location of transmitter and receiver without taking the antenna configuration into account. Analytical models capture physical wave propagation and antenna configuration simultaneously by describing the impulse response (equivalently, the transfer function) between the antenna arrays at both link ends. We also review some MIMO models that are included in current standardization activities for the purpose of reproducible and comparable MIMO system evaluations. Finally, we describe a couple of key features of channels and radio propagation which are not sufficiently included in current MIMO models.

[123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293]

References

  1. Telatar E: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 1999,10(6):585-595. 10.1002/ett.4460100604

    Article  Google Scholar 

  2. Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784

    Article  Google Scholar 

  3. http://www.airgonetworks.com

  4. http://www.beceem.com

  5. http://world.belkin.co

  6. http://www.broadcom.co

  7. Molisch AF: Wireless Communications. Wiley-IEEE Press, New York, NY, USA; 2005.

    Google Scholar 

  8. Rappaport T: Wireless Communications, Principles and Practice. Prentice-Hall, Englewood Cliffs, NJ, USA; 1996.

    MATH  Google Scholar 

  9. Paulraj A, Nabar R, Gore D: Introduction to Spate-Time Wireless Communications. Cambridge University Press, Cambridge, UK; 2003.

    Google Scholar 

  10. Correia L (Ed): Mobile Broadband Multimedia Networks. John Wiley & Sons, New York, NY, USA; 2006.

    Google Scholar 

  11. http://www.lx.it.pt/cost273

  12. Steinbauer M, Molisch AF, Bonek E: The double-directional radio channel. IEEE Antennas and Propagation Magazine 2001,43(4):51-63. 10.1109/74.951559

    Article  Google Scholar 

  13. Steinbauer M: The radio propagation channel—a non-directional, directional, and double-directional point-of-view, Ph.D. dissertation. Vienna University of Technology, Vienna, Austria

    Google Scholar 

  14. Steinbauer M: A comprehensive transmission and channel model for directional radio channel. in COST 259 TD (98) 027, Bern, Switzerland, February 1998

    Google Scholar 

  15. Steinbauer M, Hampicke D, Sommerkorn G, et al.: Array measurement of the double-directional mobile radio channel. Proceedings of the 51st IEEE Vehicular Technology Conference (VTC '00), May 2000, Tokio, Japan 3: 1656-1662.

    Google Scholar 

  16. Asztély D, Öttersten B, Swindlehurst AL: Generalised array manifold model for wireless communication channels with local scattering. IEE Proceedings - Radar, Sonar and Navigation 1998,145(1):51-57. 10.1049/ip-rsn:19981768

    Article  Google Scholar 

  17. Molisch AF, Asplund H, Heddergott R, Steinbauer M, Zwick T: The COST 259 directional channel model—I: overview and methodology. IEEE Transactions on Wireless Communications 2006,5(12):3421-3433.

    Article  Google Scholar 

  18. Correia LM (Ed): Wireless Flexible Personalised Communications (COST 259 Final Report). John Wiley & Sons, Chichester, UK; 2001.

    Google Scholar 

  19. Özcelik H: Indoor MIMO channel models, Ph.D. dissertation. Institut für Nachrichtentechnik und Hochfrequenztechnik, Vienna University of Technology, Vienna, Austria http://www.nt.tuwien.ac.at/mobile/thesesfinished

    Google Scholar 

  20. Wallace JW, Jensen MA: Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models. Proceedings of the 54th IEEE Vehicular Technology Conference (VTC '01), October 2001, Sidney, Australia 2: 1078-1082.

    Google Scholar 

  21. Wallace JW, Jensen MA: Modeling the indoor MIMO wireless channel. IEEE Transactions on Antennas and Propagation 2002,50(5):591-599. 10.1109/TAP.2002.1011224

    Article  Google Scholar 

  22. Burr A: Capacity bounds and estimates for the finite scatterers MIMO wireless channel. IEEE Journal on Selected Areas in Communications 2003,21(5):812-818. 10.1109/JSAC.2003.810291

    Article  Google Scholar 

  23. Debbah M, Müller RR: MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory 2005,51(5):1667-1690. 10.1109/TIT.2005.846388

    Article  MathSciNet  MATH  Google Scholar 

  24. Sayeed AM: Deconstructing multiantenna fading channels. IEEE Transactions on Signal Processing 2002,50(10):2563-2579. 10.1109/TSP.2002.803324

    Article  Google Scholar 

  25. Chuah C-N, Kahn JM, Tse D: Capacity of multi-antenna array systems in indoor wireless environment. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '98), November 1998, Sidney, Australia 4: 1894-1899.

    Google Scholar 

  26. Chizhik D, Rashid-Farrokhi F, Ling J, Lozano A: Effect of antenna separation on the capacity of BLAST in correlated channels. IEEE Communications Letters 2000,4(11):337-339. 10.1109/4234.892194

    Article  Google Scholar 

  27. Shiu D-S, Foschini GJ, Gans MJ, Kahn JM: Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications 2000,48(3):502-513. 10.1109/26.837052

    Article  Google Scholar 

  28. Kermoal JP, Schumacher L, Pedersen KI, Mogensen PE, Frederiksen F: A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications 2002,20(6):1211-1226. 10.1109/JSAC.2002.801223

    Article  Google Scholar 

  29. Weichselberger W, Herdin M, Özcelik H, Bonek E: A stochastic MIMO channel model with joint correlation of both link ends. IEEE Transactions on Wireless Communications 2006,5(1):90-99.

    Article  Google Scholar 

  30. 3GPP - 3GPP2 Spatial Channel Model Ad-hoc Group3GPP TR 25.996 : Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations. v6.1.0 (2003-09

  31. http://www.ist-winner.org/

  32. Erceg V, Hari KVS, Smith MS, et al.: Channel models for fixed wireless applications. Contribution IEEE 802.16.3c-01/29r4, IEEE 802.16 Broadband Wireless Access Working Grou

  33. Erceg V, Schumacher L, Kyritsi P, et al.: TGn channel models. In Tech. Rep. IEEE P802.11. , Geneva, Switzerland; 2004. http://www.802wirelessworld.com/8802

    Google Scholar 

  34. Bello P: Characterization of randomly time-variant linear channels. IEEE Transactions on Communications 1963,11(4):360-393. 10.1109/TCOM.1963.1088793

    Article  Google Scholar 

  35. Vaughan R, Andersen JB: Channels, Propagation and Antennas for Mobile Communications. IEE Press, London, UK; 2003.

    Book  Google Scholar 

  36. Kattenbach R: Considerations about the validity of WSSUS for indoor radio channels. COST 259 TD(97)070, 3rd Management Committee Meeting, September 1997, Lisbon, Portugal

    Google Scholar 

  37. Dossi L, Tartara G, Tallone F: Statistical analysis of measured impulse response functions of 2.0 GHz indoor radio channels. IEEE Journal on Selected Areas in Communications 1996,14(3):405-410. 10.1109/49.490225

    Article  Google Scholar 

  38. Kivinen J, Zhao X, Vainikainen P: Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Transactions on Antennas and Propagation 2001,49(8):1192-1203. 10.1109/8.943314

    Article  Google Scholar 

  39. Tsatsanis MK, Giannakis GB, Zhou G: Estimation and equalization of fading channels with random coefficients. Signal Processing 1996,53(2-3):211-229. 10.1016/0165-1684(96)00087-4

    Article  MATH  Google Scholar 

  40. Matz G: On non-WSSUS wireless fading channels. IEEE Transactions on Wireless Communications 2005,4(5):2465-2478.

    Article  MathSciNet  Google Scholar 

  41. Biglieri E, Proakis J, Shamai S: Fading channels: information-theoretic and communications aspects. IEEE Transactions on Information Theory 1998,44(6):2619-2692. 10.1109/18.720551

    Article  MathSciNet  MATH  Google Scholar 

  42. Sayeed AM, Aazhang B: Joint multipath-Doppler diversity in mobile wireless communications. IEEE Transactions on Communications 1999,47(1):123-132. 10.1109/26.747819

    Article  Google Scholar 

  43. Bultitude R, Brussaard G, Herben M, Willink TJ: Radio channel modelling for terrestrial vehicular mobile applications. Proceedings of Millenium Conference on Antennas and Propagation, April 2000, Davos, Switzerland 1-5.

    Google Scholar 

  44. Gehring A, Steinbauer M, Gaspard I, Grigat M: Empirical channel stationarity in urban environments. Proceedings of the 4th European Personal Mobile Communications Conference (EPMCC '01), February 2001, Vienna, Austria

    Google Scholar 

  45. K. Hugl, “Spatial channel characteristics for adaptive antenna downlink transmission,” Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, 2002.

    Google Scholar 

  46. Viering I, Hofstetter H, Utschick W: Validity of spatial covariance matrices over time and frequency. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '02), November 2002, Taipeh, Taiwan 1: 851-855.

    Google Scholar 

  47. M. Herdin, “Non-stationary indoor MIMO radio channels,” Ph.D. dissertation, Vienna University of Technology, Vienna, Austria, 2004.

    Google Scholar 

  48. Balanis C: Advanced Engineering Electromagnetics. John Wiley & Sons, New York, NY, USA; 1999.

    Google Scholar 

  49. Kouyoumjian RG, Pathak PH: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE 1974,62(11):1448-1461.

    Article  Google Scholar 

  50. Leubbers RJ: Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss. IEEE Transactions on Antennas and Propagation 1984,32(1):70-76. 10.1109/TAP.1984.1143189

    Article  Google Scholar 

  51. Bertoni H: Radio Propagation for Modern Wireless Systems. Prentice Hall PTR, Englewood Cliffs, NJ, USA; 2000.

    Google Scholar 

  52. Ling J, Chizhik D, Valenzuela RA: Predicting multi-element receive & transmit array capacity outdoors with ray tracing. Proceedings of the 53rd IEEE Vehicular Technology Conference (VTC '01), May 2001, Rhodes, Greece 1: 392-394.

    Article  Google Scholar 

  53. Cheon C, Liang G, Bertoni HL: Simulating radio channel statistics for different building environments. IEEE Journal on Selected Areas in Communications 2001,19(11):2191-2200. 10.1109/49.963805

    Article  Google Scholar 

  54. Degli-Esposti V, Guiducci D, de'Marsi A, Azzi P, Fuschini F: An advanced field prediction model including diffuse scattering. IEEE Transactions on Antennas and Propagation 2004,52(7):1717-1728. 10.1109/TAP.2004.831299

    Article  Google Scholar 

  55. Lee W: Effect on correlation between two mobile radio base-station antennas. IEEE Transactions on Communications 1973,21(11):1214-1224. 10.1109/TCOM.1973.1091578

    Article  Google Scholar 

  56. Petrus P, Reed JH, Rappaport TS: Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications 2002,50(3):495-502. 10.1109/26.990911

    Article  Google Scholar 

  57. Liberti JC, Rappaport TS: A geometrically based model for line-of-sight multipath radio channels. Proceedings of the 46th IEEE Vehicular Technology Conference (VTC '96), April-May 1996, Atlanta, Ga, USA 2: 844-848.

    Article  Google Scholar 

  58. Blanz JJ, Jung P: A flexibly configurable spatial model for mobile radio channels. IEEE Transactions on Communications 1998,46(3):367-371. 10.1109/26.662642

    Article  Google Scholar 

  59. Norklit O, Andersen JB: Diffuse channel model and experimental results for array antennas in mobile environments. IEEE Transactions on Antennas and Propagation 1998,46(6):834-840. 10.1109/8.686770

    Article  Google Scholar 

  60. Fuhl J, Molisch AF, Bonek E: Unified channel model for mobile radio systems with smart antennas. IEE Proceedings - Radar, Sonar and Navigation 1998,145(1):32-41. special issue on antenna array processing technique 10.1049/ip-rsn:19981750

    Article  Google Scholar 

  61. Oestges C, Erceg V, Paulraj AJ: A physical scattering model for MIMO macrocellular broadband wireless channels. IEEE Journal on Selected Areas in Communications 2003,21(5):721-729. 10.1109/JSAC.2003.810322

    Article  Google Scholar 

  62. Molisch AF, Kuchar A, Laurila J, Hugl K, Schmalenberger R: Geometry-based directional model for mobile radio channels—principles and implementation. European Transactions on Telecommunications 2003,14(4):351-359.

    Article  Google Scholar 

  63. Laurila J, Molisch AF, Bonek E: Influence of the scatterer distribution on power delay profiles and azimuthal power spectra of mobile radio channels. Proceedings of the 5th International Symposium on Spread Spectrum Techniques & Applications (ISSSTA '98), September 1998, Sun City, South Africa 1: 267-271.

    Article  Google Scholar 

  64. Toeltsch M, Laurila J, Kalliola K, Molisch AF, Vainikainen P, Bonek E: Statistical characterization of urban spatial radio channels. IEEE Journal on Selected Areas in Communications 2002,20(3):539-549. 10.1109/49.995513

    Article  Google Scholar 

  65. Suzuki H: A statistical model for urban radio propagation. IEEE Transactions on Communications 1977,25(7):673-680. 10.1109/TCOM.1977.1093888

    Article  Google Scholar 

  66. Kuchar A, Rossi J-P, Bonek E: Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation 2000,48(2):137-146. 10.1109/8.833062

    Article  Google Scholar 

  67. Bergljung C, Karlsson P: Propagation characteristics for indoor broadband radio access networks in the 5 GHz band. Proceedings of the 9th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '98), September 1998, Boston, Mass, USA 2: 612-616.

    Article  Google Scholar 

  68. Molisch AF: A generic model for MIMO wireless propagation channels in macro- and microcells. IEEE Transactions on Signal Processing 2004,52(1):61-71. 10.1109/TSP.2003.820144

    Article  MathSciNet  Google Scholar 

  69. Saleh AAM, Valenzuela RA: A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 1987,5(2):128-137.

    Article  Google Scholar 

  70. Chong C-C, Tan C-M, Laurenson D, McLaughlin S, Beach MA, Nix AR: A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems. IEEE Journal on Selected Areas in Communications 2003,21(2):139-150. 10.1109/JSAC.2002.807347

    Article  Google Scholar 

  71. Spencer QH, Jeffs BD, Jensen MA, Swindlehurst AL: Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications 2000,18(3):347-360. 10.1109/49.840194

    Article  Google Scholar 

  72. Zwick T, Fischer C, Wiesbeck W: A stochastic multipath channel model including path directions for indoor environments. IEEE Journal on Selected Areas in Communications 2002,20(6):1178-1192. 10.1109/JSAC.2002.801218

    Article  Google Scholar 

  73. Soma P, Baum DS, Erceg V, Krishnamoorthy R, Paulraj AJ: Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications. Proceedings of IEEE International Conference on Communications (ICC '02), April-May 2002, New York, NY, USA 1: 272-276.

    Article  Google Scholar 

  74. Weichselberger W: Spatial structure of multiple antenna radio channels, Ph.D. dissertation. Institut für Nachrichtentechnik und Hochfrequenztechnik, Vienna University of Technology, Vienna, Austria http://www.nt.tuwien.ac.at/mobile/thesesfinished

    Google Scholar 

  75. McNamara D, Beach M, Fletcher P, Karlsson P: Initial investigation of multiple-input multiple-output channels in indoor environments. Proceedings of the IEEE Benelux Chapter Symposium on Communications and Vehicular Technology (SCVT '00), October 2000, Leuven, Belgium 139-143.

    Google Scholar 

  76. Bonek E, Özcelik H, Herdin M, Weichselberger W, Wallace J: Deficiencies of the 'Kronecker' MIMO radio channel model. Proceeding of the 6th International Symposium on Wireless Personal Multimedia Communications (WPMC '03), October 2003, Yokosuka, Japan

    Google Scholar 

  77. Jakes W: Microwave Mobile Communications. IEEE Press, New York, NY, USA; 1974.

    Google Scholar 

  78. Foo S, Beach M, Burr A: Wideband outdoor MIMO channel model derived from directional channel measurements at 2 GHz. Proceedings of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC '04), September 2004, Abano Terme, Italy

    Google Scholar 

  79. Liu K, Raghavan V, Sayeed AM: Capacity scaling and spectral efficiency in wide-band correlated MIMO channels. IEEE Transactions on Information Theory 2003,49(10):2504-2526. 10.1109/TIT.2003.817446

    Article  MathSciNet  MATH  Google Scholar 

  80. Debbah M, Müller R, Hofstetter H, Lehne P: Validation of mutual information complying MIMO models. submitted to IEEE Transactions on Wireless Communications

  81. Debbah M, Müller R: Capacity complying MIMO channel models. Proceedings of the 37th Annual Asilomar Conference on Signals, Systems and Computers (ACSSC '03), November 2003, Pacific Grove, Calif, USA 2: 1815-1819.

    Google Scholar 

  82. Molisch AF, Hofstetter H, et al.: The COST273 channel model. In COST 273 Final Report. Edited by: Correia L. Springer, New York, NY, USA; 2006.

    Google Scholar 

  83. International Telecommunications Union : Guidelines for evaluation of radio transmission technologies for imt-2000. Tech. Rep. ITU-R M.1225 1997.

    Google Scholar 

  84. Baum DS, Hansen J, Del Galdo G, Milojevic M, Salo J, Kyösti P: An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). Proceedings of the 61st IEEE Vehicular Technology Conference (VTC '05), May-June 2005, Stockholm, Sweden 5: 3132-3136.

    Google Scholar 

  85. El-Sallabi H, Baum D, Zetterberg P, Kyösti P, Rautiainen T, Schneider C: Wideband spatial channel model for MIMO systems at 5 GHz in indoor and outdoor environments. Proceedings of the 63rd IEEE Vehicular Technology Conference (VTC '06), May 2006, Melbourne, Australia 6: 2916-2921.

    Google Scholar 

  86. Medbo J, Berg J-E: Measured radio wave propagation characteristics at 5 GHz for typical HIPERLAN/2 scenarios. In Tech. Rep. 3ERI074a. ETSI, Sophia-Antipolis, France; 1998.

    Google Scholar 

  87. Medbo J, Schramm P: Channel models for HIPERLAN/2. In Tech. Rep. 3ERI085B. ETSI, Sophia-Antipolis, France; 1998.

    Google Scholar 

  88. Schumacher L: WLAN MIMO channel matlab program. http://www.info.fundp.ac.be/~lsc/Research/IEEE_80211_HTSG_CMSC/distribution_terms.html

  89. Oestges C, Erceg V, Paulraj A: Propagation modeling of multi-polarized MIMO fixed wireless channels. IEEE Transactions on Vehicular Technology 2004,53(3):644-654. 10.1109/TVT.2004.827149

    Article  Google Scholar 

  90. Gesbert D, Bölcskei H, Gore DA, Paulraj AJ: Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications 2002,50(12):1926-1934. 10.1109/TCOMM.2002.806555

    Article  Google Scholar 

  91. Chizhik D, Foschini G, Gans M, Valenzuela R: Keyholes, correlations, and capacities of multielement transmit and receive antennas. IEEE Transactions on Wireless Communications 2002,1(2):361-368. 10.1109/7693.994830

    Article  Google Scholar 

  92. Almers P, Tufvesson F, Molisch AF: Measurement of keyhole effect in a wireless multiple-input multiple-output (MIMO) channel. IEEE Communications Letters 2003,7(8):373-375. 10.1109/LCOMM.2003.815655

    Article  Google Scholar 

  93. Richter A, Schneider C, Landmann M, Thomä R: Parameter estimation results of specular and dense multipath components in micro-cell scenarios. Proceedings of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC '04), September 2004, Abano Terme, Italy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Almers.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Almers, P., Bonek, E., Burr, A. et al. Survey of Channel and Radio Propagation Models for Wireless MIMO Systems. J Wireless Com Network 2007, 019070 (2007). https://doi.org/10.1155/2007/19070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/19070

Keywords