Skip to main content

Unifying View on Min-Max Fairness, Max-Min Fairness, and Utility Optimization in Cellular Networks

Abstract

We are concerned with the control of quality of service (QoS) in wireless cellular networks utilizing linear receivers. We investigate the issues of fairness and total performance, which are measured by a utility function in the form of a weighted sum of link QoS. We disprove the common conjecture on incompatibility of min-max fairness and utility optimality by characterizing network classes in which both goals can be accomplished concurrently. We characterize power and weight allocations achieving min-max fairness and utility optimality and show that they correspond to saddle points of the utility function. Next, we address the problem of the difference between min-max fairness and max-min fairness. We show that in general there is a (fairness) gap between the performance achieved under min-max fairness and under max-min fairness. We characterize the network class for which both performance values coincide. Finally, we characterize the corresponding network subclass, in which both min-max fairness and max-min fairness are achievable by the same power allocation.

[12345678910111213141516171819202122232425262728293031323334353637383940414243444546]

References

  1. Varian H: The Economics of Information Technology, An Introduction. Cambridge University Press, Cambridge, UK; 2004.

    Book  Google Scholar 

  2. Hahne EL: Round-robin scheduling for max-min fairness in data networks. IEEE Journal on Selected Areas in Communications 1991,9(7):1024-1039. 10.1109/49.103550

    Article  Google Scholar 

  3. Hanly SV, Tse D-N: Power control and capacity of spread spectrum wireless networks. Automatica 1999,35(12):1987-2012. 10.1016/S0005-1098(99)00133-8

    MathSciNet  Article  MATH  Google Scholar 

  4. Catrein D, Imhof LA, Mathar R: Power control, capacity, and duality of uplink and downlink in cellular CDMA systems. IEEE Transactions on Communications 2004,52(10):1777-1785. 10.1109/TCOMM.2004.836451

    Article  Google Scholar 

  5. Imhof LA, Mathar R: Capacity regions and optimal power allocation for CDMA cellular radio. IEEE Transactions on Information Theory 2005,51(6):2011-2019. 10.1109/TIT.2005.847720

    MathSciNet  Article  MATH  Google Scholar 

  6. Zander J: Distributed cochannel interference control in cellular radio systems. IEEE Transactions on Vehicular Technology 1992,41(3):305-311. 10.1109/25.155977

    Article  Google Scholar 

  7. Yates RD: A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications 1995,13(7):1341-1347. 10.1109/49.414651

    MathSciNet  Article  Google Scholar 

  8. Foschini GJ, Miljanic Z: A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology 1993,42(4):641-646. 10.1109/25.260747

    Article  Google Scholar 

  9. Kandukuri S, Boyd S: Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Transactions on Wireless Communications 2002,1(1):46-55. 10.1109/7693.975444

    Article  Google Scholar 

  10. Ulukus S, Yates RD: Stochastic power control for cellular radio systems. IEEE Transactions on Communications 1998,46(6):784-798. 10.1109/26.681417

    Article  Google Scholar 

  11. Tassiulas L, Sarkar S: Maxmin fair scheduling in wireless networks. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '02), June 2002, New York, NY, USA 2: 763-772.

    Google Scholar 

  12. Radunovic B, Le Boudec J-Y: Why max-min fairness is not suitable for multi-hop wireless networks. In Document. Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; 2003.

    Google Scholar 

  13. Kelly FP: Charging and rate control for elastic traffic. European Transactions on Telecommunications 1997,8(1):33-37. 10.1002/ett.4460080106

    Article  Google Scholar 

  14. Kelly FP, Maulloo AK, Tan DKH: Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society 1998,49(3):237-252.

    Article  MATH  Google Scholar 

  15. Le Boudec J-Y: Rate adaptation, congestion control and fairness: a tutorial. In Tutorial. Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; 2000.

    Google Scholar 

  16. Mo J, Walrand J: Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking 2000,8(5):556-567. 10.1109/90.879343

    Article  Google Scholar 

  17. Marbach P: Priority service and max-min fairness. IEEE/ACM Transactions on Networking 2003,11(5):733-746. 10.1109/TNET.2003.818196

    Article  Google Scholar 

  18. Massoulie L, Roberts J: Bandwidth sharing: objectives and algorithms. IEEE/ACM Transactions on Networking 2002,10(3):320-328. 10.1109/TNET.2002.1012364

    Article  Google Scholar 

  19. Srinivasan R, Somani AK: On achieving fairness and efficiency in high-speed shared medium access. IEEE/ACM Transactions on Networking 2003,11(1):111-124. 10.1109/TNET.2002.808402

    Article  Google Scholar 

  20. Chiang M: To layer or not to layer: balancing transport and physical layers in wireless multihop networks. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), March 2004, Hongkong 4: 2525-2536.

    Google Scholar 

  21. Marbach P, Berry R: Downlink resource allocation and pricing for wireless networks. Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '02), June 2002, New York, NY, USA 3: 1470-1479.

    Google Scholar 

  22. Chiang M, Bell J: Balancing supply and demand of bandwidth in wireless cellular networks: utility maximization over powers and rates. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), March 2004, Hongkong 4: 2800-2811.

    Google Scholar 

  23. O'Neill D, Julian D, Boyd S: Seeking Foschini's genie: optimal rates and powers in wireless networks. to appear in IEEE Transactions on Vehicular Technology

  24. Kaiser T, Bourdoux A, Boche H, Fonollosa JR, Andersen JB, Utschick W (Eds): Smart Antennas—State of the Art, Part IV. Network Theory, EURASIP Book Series on Signal Processing and Communications. Volume 3. Hindawi, New York, NY, USA; 2006.

    Google Scholar 

  25. Tang A, Wang J, Low SH: Is fair allocation always inefficient. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), March 2004, Hongkong 1: 35-45.

    Google Scholar 

  26. Mangasarian O: Nonlinear Programming. McGraw-Hill, New York, NY, USA; 1969.

    MATH  Google Scholar 

  27. Rashid-Farrokhi F, Liu KJR, Tassiulas L: Transmit beamforming and power control for cellular wireless systems. IEEE Journal on Selected Areas in Communications 1998,16(8):1437-1449. 10.1109/49.730452

    Article  Google Scholar 

  28. Rashid-Farrokhi F, Tassiulas L, Liu KJR: Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Transactions on Communications 1998,46(10):1313-1324. 10.1109/26.725309

    Article  Google Scholar 

  29. Minc H: Nonnegative Matrices. John Wiley & Sons, New York, NY, USA; 1988.

    MATH  Google Scholar 

  30. Boche H, Wiczanowski M, Schubert M: Interference topology in wireless networks - supportable QoS region and max-min fairness. Proceedings of the 39th Annual Conference on Information Sciences and Systems (CISS '05), March 2005, Baltimore, Md, USA

    Google Scholar 

  31. Boche H, Schubert M: On the structure of the unconstrained multiuser QoS region. to appear in IEEE Transactions on Signal Processing

  32. Viswanath P, Tse DNC, Laroia R: Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory 2002,48(6):1277-1294. 10.1109/TIT.2002.1003822

    MathSciNet  Article  MATH  Google Scholar 

  33. Boche H, Stanczak S: The Kullback-Leibler divergence and nonnegative matrices. IEEE Transactions on Information Theory 2006,52(12):5539-5545.

    MathSciNet  Article  MATH  Google Scholar 

  34. Tassiulas L, Ephremides A: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control 1992,37(12):1936-1948. 10.1109/9.182479

    MathSciNet  Article  MATH  Google Scholar 

  35. Neely MJ, Modiano E, Rohrs CE: Power allocation and routing in multibeam satellites with time-varying channels. IEEE/ACM Transactions on Networking 2003,11(1):138-152. 10.1109/TNET.2002.808401

    Article  Google Scholar 

  36. Kobayashi M, Caire G: Joint beamforming and scheduling for a MIMO downlink with random arrivals. Proceedings of IEEE International Symposium on Information Theory (ISIT '06), July 2006, Seattle, Wash, USA

    Google Scholar 

  37. Boche H, Wiczanowski M: Stability-optimal transmission policy for the multiple antenna multiple access channel in the geometric view. Signal Processing 2006,86(8):1815-1833. 10.1016/j.sigpro.2005.09.040

    Article  MATH  Google Scholar 

  38. Boche H, Wiczanowski M: The interplay of link layer and physical layer under mimo enhancement: benefits and challenges. IEEE Wireless Communications 2006,13(4):48-55. 10.1109/MWC.2006.1678165

    Article  Google Scholar 

  39. Boche H, Stanczak S: Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed. IEEE Transactions on Information Theory 2005,51(1):374-381. 10.1109/TIT.2004.839530

    MathSciNet  Article  MATH  Google Scholar 

  40. Boche H, Wiczanowski M, Stanczak S: Characterization of optimal resource allocation in cellular networks. Proceedings of the 5th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC '04), July 2004, Lisbon, Portugal 454-458.

    Google Scholar 

  41. Gantmacher FR: Theory of Matrices. Oxford University Press, New York, NY, USA; 1998.

    MATH  Google Scholar 

  42. Edelman A: Eigenvalues and condition numbers of random matrices, Ph.D. thesis. Massachusetts Institute of technology (MIT), Cambridge, Mass, USA; 1989.

    Google Scholar 

  43. Boyd S, Vandenberghe L: Convex Optimization. Cambridge University Press, Cambridge, UK; 2004.

    Book  MATH  Google Scholar 

  44. Boche H, Schubert M: A general theory for SIR balancing. EURASIP Journal on Wireless Communications and Networking 2006, 2006: 18 pages.

    Article  MATH  Google Scholar 

  45. Boche H, Schubert M, Wiczanowski M: An algebra for log-convex interference functions. Proceedings of IEEE International Symposium on Information Theory and Its Applications (ISITA '06), October 2006, Seoul, Korea

    Google Scholar 

  46. Ricceri B, Simons S (Eds): Minimax Theory and Applications. Kluwer Academic, Boston, Mass, USA; 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Boche.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Boche, H., Wiczanowski, M. & Stanczak, S. Unifying View on Min-Max Fairness, Max-Min Fairness, and Utility Optimization in Cellular Networks. J Wireless Com Network 2007, 034869 (2007). https://doi.org/10.1155/2007/34869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/34869

Keywords

  • Information System
  • Utility Function
  • Saddle Point
  • System Application
  • Power Allocation