Skip to main content

A Variational Approach to the Modeling of MIMO Systems

Abstract

Motivated by the study of the optimization of the quality of service for multiple input multiple output (MIMO) systems in 3G (third generation), we develop a method for modeling MIMO channel. This method, which uses a statistical approach, is based on a variational form of the usual channel equation. The proposed equation is given by with scalar variable. Minimum distance of received vectors is used as the random variable to model MIMO channel. This variable is of crucial importance for the performance of the transmission system as it captures the degree of interference between neighbors vectors. Then, we use this approach to compute numerically the total probability of errors with respect to signal-to-noise ratio (SNR) and then predict the numbers of antennas. By fixing SNR variable to a specific value, we extract informations on the optimal numbers of MIMO antennas.

[123456789101112131415161718192021]

References

  1. 1.

    Love DJ, Heath RW Jr., Santipach W, Honig ML: What is the value of limited feedback for MIMO channels? IEEE Communications Magazine 2004,42(10):54-59. 10.1109/MCOM.2004.1341261

    Article  Google Scholar 

  2. 2.

    Gesbert D, Shafi M, Shiu D-S, Smith PJ, Naguib A: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 2003,21(3):281-302. 10.1109/JSAC.2003.809458

    Article  Google Scholar 

  3. 3.

    Erceg V, Hari KVS, Smith MS, et al.: Channel models for fixed wireless applications. In Tech. Rep. IEEE 802.16-3c-01/29r4. The Communication Technology Laboratory, Zurich, Switzerland; 2001.

    Google Scholar 

  4. 4.

    Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784

    Article  Google Scholar 

  5. 5.

    Proaki JG: Digital Communication. 3rd edition. McGraw-Hill, New York, NY, USA; 1995.

    Google Scholar 

  6. 6.

    Giorgetti A, Chiani M, Win MZ: The effect of narrowband interference on wideband wireless communication systems. IEEE Transactions on Communications 2005,53(12):2139-2149. 10.1109/TCOMM.2005.860047

    Article  Google Scholar 

  7. 7.

    Hirosaki B: An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Transactions on Communications 1981,29(7):982-989. 10.1109/TCOM.1981.1095093

    Article  Google Scholar 

  8. 8.

    Mussardo G: Off-critical statistical models: factorized scattering theories and bootstrap program. Physics Report 1992,218(5-6):215-379. 10.1016/0370-1573(92)90047-4

    MathSciNet  Article  Google Scholar 

  9. 9.

    Baym G: Lectures on Quantum Mechanics. W. A. Benjamin, New York, NY, USA; 1969.

    Google Scholar 

  10. 10.

    Messiah A: Quantum Mechanics. Volume 2. Dunod, Paris, France; 1972.

    Google Scholar 

  11. 11.

    Prasad R, Mohr W, Konhauser W: Third Generation Mobile Communication Systems. Artech House, Norwood, Mass, USA; 2000. Universal Personal Communications Librar

    Google Scholar 

  12. 12.

    Winters JH: On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE Journal on Selected Areas in Communications 1987,5(5):871-878. 10.1109/JSAC.1987.1146600

    Article  Google Scholar 

  13. 13.

    Telatar IE: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 1999,10(6):585-595. 10.1002/ett.4460100604

    Article  Google Scholar 

  14. 14.

    3GPP : Multiple-input multiple-output antenna processing for HSDPA. In Tech. Rep. 3GPP TR 25.876 v0.0.1. ARIB, CWTS, ETSI, TI, TTA, TTc, 650 Route des Luccoles-Sofia Antipolis, Valbonne, France; 2001:2001-2011. http://www.3gpp.org.

  15. 15.

    Burel G: Theoretical results for fast determination of the number of antennas in MIMO transmission systems. Proceedings of the IASTED International Conference on Communications, Internet, and Information Technology (CIIT '02), November 2002, St Thomas, Virgin Islands, USA

    Google Scholar 

  16. 16.

    Tarokh V, Seshadri N, Calderbank AR: Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory 1998,44(2):744-765. 10.1109/18.661517

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Colton DL, Kress R: Integral Equation Methods in Scattering Theory. John Wiley & Sons, New York, NY, USA; 1983.

    Google Scholar 

  18. 18.

    Colton DL, Kress R: Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition. Springer, New York, NY, USA; 1998.

    Google Scholar 

  19. 19.

    Kirsch A: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York, NY, USA; 1996.

    Google Scholar 

  20. 20.

    Raghavan V, Sayeed AM: MIMO capacity scaling and saturation in correlated environments. Proceedings of IEEE International Conference on Communications (ICC '03), May 2003, Anchorage, Alaska, USA 5: 3006-3010.

    Google Scholar 

  21. 21.

    Debbah M, Muller RR: MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory 2005,51(5):1667-1690. 10.1109/TIT.2005.846388

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A Jraifi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Jraifi, A., Saidi, E. A Variational Approach to the Modeling of MIMO Systems. J Wireless Com Network 2007, 049350 (2007). https://doi.org/10.1155/2007/49350

Download citation

Keywords

  • Information System
  • Minimum Distance
  • Statistical Approach
  • Optimal Number
  • System Application