Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Employing Coordinated Transmit and Receive Beamforming in Clustering Double-Directional Radio Channel

  • 915 Accesses

Abstract

A novel beamforming (BF) system that employs two switched beam antennas (SBAs) at both ends of the wireless link in an indoor double-directional radio channel (DDRC) is proposed. The distributed directivity gain (DDG) and beam pattern correlation in DDRC are calculated. The channel capacity of the BF system is obtained from an analytical model. Using the channel capacity and outage capacity as performance measures, we show that the DDG of the BF system directly increases the average signal-to-noise ratio (SNR) of the wireless link, thus achieving a direct increase of the ergodic channel capacity. By jointly switching between different pairs of transmit (Tx) and receive (Rx) directional beam patterns towards different wave clusters, the system provides diversity gain to combat against multipath fading, thus reducing the outage probability of the random channel capacity. Furthermore, the performance of the BF system is compared with that of a multiple-input multiple-output (MIMO) system that is set up using linear antenna arrays. Results show that in a low-SNR environment, the BF system outperforms the MIMO system in the same clustering DDRC.

[12345678910111213141516171819202122]

References

  1. 1.

    Sheikh K, Gesbert D, Gore D, Paulraj A: Smart antennas for broadband wireless access networks. IEEE Communications Magazine 1999,37(11):100-105. 10.1109/35.803658

  2. 2.

    Litva J, Lo TK-Y: Digital Beamforming in Wireless Communications. Artech House, Boston, Mass, USA; 1996.

  3. 3.

    Sun C, Karmakar NC: Adaptive array antennas. In Encyclopedia of RF and Microwave Engineering. Edited by: Chang K. John Wiley & Sons, New York, NY, USA; 2005:5832.

  4. 4.

    Passerini C, Missiroli M, Riva G, Frullone M: Adaptive antenna arrays for reducing the delay spread in indoor radio channels. Electronics Letters 1996,32(4):280-281. 10.1049/el:19960191

  5. 5.

    Brennan DG: Linear diversity combining techniques. Proceedings of the IEEE 2003,91(2):331-356. 10.1109/JPROC.2002.808163

  6. 6.

    Schwartz M, Bennett WR, Stein S: Communication Systems and Techniques. McGraw-Hill, New York, NY, USA; 1966.

  7. 7.

    Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784

  8. 8.

    Naguib AF, Seshádri N, Calderbank AR: Increasing data rate over wireless channels. IEEE Signal Processing Magazine 2000,17(3):76-92. 10.1109/79.841731

  9. 9.

    Steinbauer M, Molisch AF, Bonek E: The double-directional radio channel. IEEE Antennas & Propagation Magazine 2001,43(4):51-63. 10.1109/74.951559

  10. 10.

    Sun C, Karmakar NC: Direction of arrival estimation with a novel single-port smart antenna. EURASIP Journal on Applied Signal Processing 2004,2004(9):1364-1375. 10.1155/S111086570431108X

  11. 11.

    Wallace JW, Jensen MA: Modeling the indoor MIMO wireless channel. IEEE Transactions on Antennas and Propagation 2002,50(5):591-599. 10.1109/TAP.2002.1011224

  12. 12.

    Saleh A, Valenzuela R: A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 1987,5(2):128-137.

  13. 13.

    Spencer QH, Jeffs BD, Jensen MA, Swindlehurst AL: Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications 2000,18(3):347-360. 10.1109/49.840194

  14. 14.

    Jensen MA, Wallace JW: A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation 2004,52(11):2810-2824. 10.1109/TAP.2004.835272

  15. 15.

    Ohira T, Cheng J: Analog smart antennas. In Adaptive Antenna Arrays: Trends and Applications. Edited by: Chandran S. Springer, New York, NY, USA; 2004:184-204.

  16. 16.

    Sun C, Hirata A, Ohira T, Karmakar NC: Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment. IEEE Transactions on Antennas and Propagation 2004,52(7):1819-1832. 10.1109/TAP.2004.831314

  17. 17.

    Kawakami H, Ohira T: Electrically steerable passive array radiator (ESPAR) antennas. IEEE Antennas & Propagation Magazine 2005,47(2):43-50.

  18. 18.

    http://www.qsl.net/wb6tpu/swindex.html

  19. 19.

    Chong C-C, Tan C-M, Laurenson DI, McLaughlin S, Beach MA, Nix AR: A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems. IEEE Journal on Selected Areas in Communications 2003,21(2):139-150. 10.1109/JSAC.2002.807347

  20. 20.

    Vaugh R, Andersen JB: Channels, Propagation and Antennas for Mobile Communications, IEE Electromagnetic Waves Series. Institution of Electrical Engineers, Glasgow, UK; 2003.

  21. 21.

    Li X, Nie Z-P: Effect of array orientation on performance of MIMO wireless channels. IEEE Antennas and Wireless Propagation Letters 2004,3(1):368-371.

  22. 22.

    Günther CG: Comment on "estimate of channel capacity in Rayleigh fading environment". IEEE Transactions on Vehicular Technology 1996,45(2):401-403. 10.1109/25.492915

Download references

Author information

Correspondence to Chen Sun.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sun, C., Taromaru, M. & Ohira, T. Employing Coordinated Transmit and Receive Beamforming in Clustering Double-Directional Radio Channel. J Wireless Com Network 2007, 057175 (2007). https://doi.org/10.1155/2007/57175

Download citation

Keywords

  • Outage Probability
  • Radio Channel
  • Antenna Array
  • Channel Capacity
  • Wireless Link