Skip to main content
  • Research Article
  • Open access
  • Published:

Transmit Diversity at the Cell Border Using Smart Base Stations

Abstract

We address the problems at the most critical area in a cellular multicarrier code division multiple access (MC-CDMA) network, namely, the cell border. At a mobile terminal the diversity can be increased by using transmit diversity techniques such as cyclic delay diversity (CDD) and space-time coding like Alamouti. We transfer these transmit diversity techniques to a cellular environment. Therefore, the performance is enhanced at the cell border, intercellular interference is avoided, and soft handover procedures are simplified all together. By this, macrodiversity concepts are exchanged by transmit diversity concepts. These concepts also shift parts of the complexity from the mobile terminal to smart base stations.

[12345678910111213141516171819202122232425]

References

  1. IST-2003-507581 WINNER Project https://www.ist-winner.org

  2. Plass S: On intercell interference and its cancellation in cellular multicarrier CDMA systems. EURASIP Journal on Wireless Communications and Networking 2008, 2008: 11 pages.

    Article  Google Scholar 

  3. Wong D, Lim TJ: Soft handoffs in CDMA mobile systems. IEEE Personal Communications 1997,4(6):6-17. 10.1109/98.637378

    Article  Google Scholar 

  4. Schinnenburg M, Forkel I, Haverkamp B: Realization and optimization of soft and softer handover in UMTS networks. Proceedings of European Personal Mobile Communications Conference (EPMCC '03), April 2003, Glasgow, UK 603-607.

    Google Scholar 

  5. Wittneben A: A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 1630-1634.

    Chapter  Google Scholar 

  6. Dammann A, Kaiser S: Performance of low complex antenna diversity techniques for mobile OFDM systems. Proceedings of International Workshop on Multi-Carrier Spread Spectrum (MC-SS '01), September 2001, Oberpfaffenhofen, Germany 53-64.

    Google Scholar 

  7. Tarokh V, Jafarkhani H, Calderbank AR: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999,45(5):1456-1467. 10.1109/18.771146

    Article  MATH  MathSciNet  Google Scholar 

  8. Inoue M, Fujii T, Nakagawa M: Space time transmit site diversity for OFDM multi base station system. Proceedings of the 4th EEE International Workshop on Mobile and Wireless Communication Networks (MWCN '02), September 2002, Stockholm, Sweden 30-34.

    Chapter  Google Scholar 

  9. Weinstein SB, Ebert PM: Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications 1971,19(5):628-634. 10.1109/TCOM.1971.1090705

    Article  Google Scholar 

  10. Wang Z, Giannakis GB: Wireless multicarrier communications: where Fourier meets Shannon. IEEE Signal Processing Magazine 2000,17(3):29-48. 10.1109/79.841722

    Article  Google Scholar 

  11. Sternad M, Svensson T, Klang G: The WINNER B3G system MAC concept. Proceedings of IEEE Vehicular Technology Conference (VTC '06), September 2006, Montreal, Canada 3037-3041.

    Google Scholar 

  12. Fazel K, Papke L: On the performance of concolutionally-coded CDMA/OFDM for mobile communications systems. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '93), September 1993, Yokohama, Japan 468-472.

    Google Scholar 

  13. Yee N, Linnartz J-P, Fettweis G: Multi-carrier CDMA for indoor wireless radio networks. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '93), September 1993, Yokohama, Japan 109-113.

    Google Scholar 

  14. Fazel K, Kaiser S: Multi-Carrier and Spread Spectrum Systems. John Wiley & Sons, San Francisco, Calif, USA; 2003.

    Book  Google Scholar 

  15. Viterbi A: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 1967,13(2):260-269.

    Article  MATH  Google Scholar 

  16. Dammann A, Kaiser S: Transmit/receive-antenna diversity techniques for OFDM systems. European Transactions on Telecommunications 2002,13(5):531-538. 10.1002/ett.4460130514

    Article  Google Scholar 

  17. Auer G: Channel estimation for OFDM with cyclic delay diversity. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '04), September 2004, Barcelona, Spain 3: 1792-1796.

    Google Scholar 

  18. Bauch G: Differential modulation and cyclic delay diversity in orthogonal frequency-division multiplex. IEEE Transactions on Communications 2006,54(5):798-801.

    Article  Google Scholar 

  19. Stüber GL: Principles of Mobile Communication. Kluwer Academic Publishers, Norwell, Mass, USA; 2001.

    Google Scholar 

  20. Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998,16(8):1451-1458. 10.1109/49.730453

    Article  Google Scholar 

  21. Tse D, Viswanath P: Fundamentals of Wireless Communication. Cambridge University Press, New York, NY, USA; 2005.

    Book  MATH  Google Scholar 

  22. Plass S, Doukopoulos XG, Legouable R: On MC-CDMA link-level inter-cell interference. Proceedings of the 65th IEEE Vehicular Technology Conference (VTC '07), April 2007, Dublin, Ireland 2656-2660.

    Google Scholar 

  23. Schulze H:A comparison between Alamouti transmit diversity and (cyclic) delay diversity for a system. Proceedings of International OFDM Workshop, August 2006, Hamburg, Germany

    Google Scholar 

  24. IST-2003-507581 WINNER : D2.10: final report on identified RI key technologies, system concept, and their assessment. 2005.

    Google Scholar 

  25. Bauch G, Malik JS: Cyclic delay diversity with bit-interleaved coded modulation in orthogonal frequency division multiple access. IEEE Transactions on Wireless Communications 2006,5(8):2092-2100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Plass.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Plass, S., Raulefs, R. & Dammann, A. Transmit Diversity at the Cell Border Using Smart Base Stations. J Wireless Com Network 2007, 060654 (2007). https://doi.org/10.1155/2007/60654

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/60654

Keywords