Skip to main content

Advertisement

Radar Sensor Networks: Algorithms for Waveform Design and Diversity with Application to ATR with Delay-Doppler Uncertainty

  • 1200 Accesses

  • 9 Citations

Abstract

Automatic target recognition (ATR) in target search phase is very challenging because the target range and mobility are not yet perfectly known, which results in delay-Doppler uncertainty. In this paper, we firstly perform some theoretical studies on radar sensor network (RSN) design based on linear frequency modulation (LFM) waveform: (1) the conditions for waveform coexistence, (2) interferences among waveforms in RSN, (3) waveform diversity in RSN. Then we apply RSN to ATR with delay-Doppler uncertainty and propose maximum-likeihood (ML) ATR algorithms for fluctuating targets and nonfluctuating targets. Simulation results show that our RSN vastly reduces the ATR error compared to a single radar system in ATR with delay-Doppler uncertainty. The proposed waveform design and diversity algorithms can also be applied to active RFID sensor networks and underwater acoustic sensor networks.

[123456789101112131415]

References

  1. 1.

    Johnson RA, Titlebaum EL: Range-doppler uncoupling in the doppler tolerant bat signal. Proceedings of IEEE Ultrasonics Symposium, October 1972, Boston, Mass, USA 64-67.

  2. 2.

    Sowelam SM, Tewfik AH: Waveform selection in radar target classification. IEEE Transactions on Information Theory 2000,46(3):1014-1029. 10.1109/18.841178

  3. 3.

    Baggenstoss PM: Adaptive pulselength correction (APLECORR): a strategy for waveform optimization in ultrawideband active sonar. IEEE Journal of Oceanic Engineering 1998,23(1):1-11. 10.1109/48.659444

  4. 4.

    Kershaw DJ, Evans RJ: Optimal waveform selection for tracking systems. IEEE Transactions on Information Theory 1994,40(5):1536-1550. 10.1109/18.333866

  5. 5.

    Niu R, Willett P, Bar-Shalom Y: Tracking considerations in selection of radar waveform for range and range-rate measurements. IEEE Transactions on Aerospace and Electronic Systems 2002,38(2):467-487. 10.1109/TAES.2002.1008980

  6. 6.

    Sun Y, Willett P, Lynch R: Waveform fusion in sonar signal processing. IEEE Transactions on Aerospace and Electronic Systems 2004,40(2):462-477. 10.1109/TAES.2004.1309997

  7. 7.

    Skolnik MI: Introduction to Radar Systems. 3rd edition. McGraw Hill, New York, NY, USA; 2001.

  8. 8.

    Deng H: Synthesis of binary sequences with good auto-correlation and cross-correlation properties by simulated annealing. IEEE Transactions on Aerospace and Electronic Systems 1996,32(1):98-107.

  9. 9.

    Liang Q: Waveform design and diversity in radar sensor networks: theoretical analysis and application to automatic target recognition. Proceedings of International Workshop on Wireless Ad Hoc and Sensor Networks (IWWAN '06), June 2006, New York, NY, USA

  10. 10.

    Richards MA: Fundamentals of Radar Signal Processing. McGraw-Hill, New York, NY, USA; 2005.

  11. 11.

    Lin CR, Gerla M: Adaptive clustering for mobile wireless networks. IEEE Journal on Selected Areas in Communications 1997,15(7):1265-1275. 10.1109/49.622910

  12. 12.

    Iwata A, Chiang C-C, Pei G, Gerla M, Chen T-W: Scalable routing strategies for ad hoc wireless networks. IEEE Journal on Selected Areas in Communications 1999,17(8):1369-1379. 10.1109/49.779920

  13. 13.

    Hou T-C, Tsai T-J: An access-based clustering protocol for multihop wireless ad hoc networks. IEEE Journal on Selected Areas in Communications 2001,19(7):1201-1210. 10.1109/49.932689

  14. 14.

    Steenstrup M: Cluster-based networks. In Ad Hoc Networking. Edited by: Perkins C. Addison-Wesley, Reading, Mass, USA; 2001:75-138. chapter

  15. 15.

    Swerling P: Probability of detection for fluctuating targets. IEEE Transactions on Information Theory 1960,6(2):269-308. 10.1109/TIT.1960.1057561

Download references

Author information

Correspondence to Qilian Liang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Liang, Q. Radar Sensor Networks: Algorithms for Waveform Design and Diversity with Application to ATR with Delay-Doppler Uncertainty. J Wireless Com Network 2007, 089103 (2007) doi:10.1155/2007/89103

Download citation

Keywords

  • Radar
  • Sensor Network
  • System Application
  • Target Range
  • Radar System