Skip to content


  • Research Article
  • Open Access

Enhancement of Unequal Error Protection Properties of LDPC Codes

EURASIP Journal on Wireless Communications and Networking20072007:092659

  • Received: 13 March 2007
  • Accepted: 2 October 2007
  • Published:


It has been widely recognized in the literature that irregular low-density parity-check (LDPC) codes exhibit naturally an unequal error protection (UEP) behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the additive white Gaussian noise channel.


  • Information System
  • Optimization Strategy
  • Gaussian Noise
  • System Application
  • White Gaussian Noise


Authors’ Affiliations

ETIS laboratory, UMR 8051-ENSEA/UCP/CNRS, 6 Avenue du Ponceau, Cergy-Pontoise, 95014, France


  1. Hagenauer J: Rate-compatible punctured convolutional (RCPC) codes and their applications. IEEE Transactions on Communications 1988,36(4):389-400. 10.1109/26.2763View ArticleGoogle Scholar
  2. Barbulescu AS, Pietrobon SS: Rate compatible turbo codes. Electronics Letters 1995,31(7):535-536. 10.1049/el:19950406View ArticleGoogle Scholar
  3. Henkel W, Von Deetzen N: Path pruning for unequal error protection turbo codes. International Zürich Seminar on Digital Communications, February 2006, Zürich, Switzerland, 2006: 142-145.Google Scholar
  4. Ha J, McLaughlin SW: Optimal puncturing of irregular low-density parity-check codes. Proceedings of IEEE International Conference on Communications (ICC '03), May 2003, Seattle, Wash, USA 5: 3110-3114.Google Scholar
  5. Lan C-F, Narayanan KR, Xiong Z: Scalable image transmission using rate-compatible irregular repeat accumulate (IRA) codes. Proceedings of IEEE International Conference on Image Processing (ICIP '02), September 2002, Rochester, NY, USA 3: 717-720.Google Scholar
  6. Pan X, Banishashemi AH, Cuhadar A: Progressive transmission of images over fading channels using rate-compatible LDPC codes. IEEE Transactions on Image Processing 2006,15(12):3627-3635.MathSciNetView ArticleGoogle Scholar
  7. Lan C-F, Xiong Z, Narayanan KR: Source-optimized irregular repeat accumulate codes with inherent unequal error protecticn capabilities and their application to scalable image transmission. IEEE Transactions on Image Processing 2006,15(7):1740-1750.View ArticleGoogle Scholar
  8. Poulliat C, Declercq D, Lamy-Bergot C, Fijalkow I: Analysis and optimization of irregular LDPC codes for joint source-channel decoding. IEEE Communication Letters 2005,9(12):1064-1066. 10.1109/LCOMM.2005.1576589View ArticleGoogle Scholar
  9. Boyarinov IM, Katsman GL: Linear unequal error protection codes. IEEE Transactions on Information Theory 1981,27(2):168-175. 10.1109/TIT.1981.1056327MathSciNetView ArticleMATHGoogle Scholar
  10. Masnick B, Wolf J: On linear unequal error protection codes. IEEE Transactions on Information Theory 1967,13(4):600-607.View ArticleMATHGoogle Scholar
  11. Guinand PS, Boudreau D, Kerr R: Construction of UEP codes suitable for iterative decoding. Proceedings of the 6th Canadian Workshop on Information Theory, June 1999, Kingston, Ontario, Canada 17-20.Google Scholar
  12. Yang X, Yuan D, Ma P, Jiang M: New research on unequal error protection (UEP) property of irregular LDPC codes. Proceedings of IEEE Consumer Communications and Networking Conference (CCNC '04), January 2004, Las Vegas, Nev, USA 361-363.Google Scholar
  13. Luby M, Mitzenmacher M, Shokrollahi A: Pratical loss resilient codes. Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC '97), May 1997, El Paso, Tex, USA 150-159.View ArticleGoogle Scholar
  14. Chung S-Y, Richardson TJ, Urbanke RL: Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Information Theory 2001,47(2):657-670. 10.1109/18.910580MathSciNetView ArticleMATHGoogle Scholar
  15. Pishro-Nik H, Rahnavard N, Fekri F: Nonuniform error correction using low-density parity-check codes. IEEE Transactions on Information Theory 2005,51(7):2702-2714. 10.1109/TIT.2005.850230MathSciNetView ArticleMATHGoogle Scholar
  16. Rahnavard N, Fekri F: Unequal error protection using low-density parity-check codes. Proceedings of IEEE International Symposium on Information Theory, June 2004, Chicago, Ill, USA, 449.Google Scholar
  17. Rahnavard N, Fekri F: New results on unequal error protection using LDPC codes. IEEE Communications Letters 2006,10(1):43-45. 10.1109/LCOMM.2006.1576564View ArticleGoogle Scholar
  18. Rahnavard N, Pishro-Nik H, Fekri F: Unequal error protection using partially regular LDPC codes. IEEE Transactions on Communications 2007,55(3):387-391.View ArticleMATHGoogle Scholar
  19. Rahnavard N, Vellambi BN, Fekri F: Rateless codes with unequal error protection property. IEEE Transactions on Information Theory 2007,53(4):1521-1532.MathSciNetView ArticleMATHGoogle Scholar
  20. Lin X, Wu W: LDPC codes for unequal error protection. Proceedings of International Conference on Signal Processing (ICSP '04), August-September 2004, Beijing, China 2: 1798-1800.Google Scholar
  21. Kumar V, Milenkovic O: On unequal error protection LDPC codes based on plotkin-type constructions. IEEE Transactions on Communications 2006,54(6):994-1005. 10.1109/TCOMM.2006.876842View ArticleGoogle Scholar
  22. Richardson TJ, Urbanke RL: The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory 2001,47(2):599-618. 10.1109/18.910577MathSciNetView ArticleMATHGoogle Scholar
  23. Richardson T, Urbanke R: Modern Coding Theory. Cambridge University Press, Cambridge, UK; 2005.MATHGoogle Scholar
  24. Richardson TJ, Shokrollahi MA, Urbanke RL: Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory 2001,47(2):619-637. 10.1109/18.910578MathSciNetView ArticleMATHGoogle Scholar
  25. Chung S-Y: On the construction of some capacity-approaching coding schemes, Ph.D. dissertation.Google Scholar
  26. Poulliat C, Fijalkow I, Declercq D: Scalable image transmission using UEP optimized LDPC codes. Proceedings of the 2nd International Symposium on Image/Video Communications over Fixed and Mobile Networks (ISIVC '04), July 2004, Brest, France 109-112.Google Scholar


© Charly Poulliat et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.