Skip to main content

Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

Abstract

Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC) is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain) method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output) capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.

[1234567891011121314151617181920212223242526272829303132]

References

  1. 1.

    Bodnar Z, Herczku Z, Berces J, et al.: A detailed experimental study of the LEO satellite to indoor channel characteristics. International Journal of Wireless Information Networks 1999,6(2):79-91. 10.1023/A:1018887418259

    Article  Google Scholar 

  2. 2.

    King PR, Evans BG, Stavrou S: Physical-statistical model for the land mobile-satellite channel applied to satellite/HAP MIMO. Proceedings of the 11th European Wireless Conference, April 2005, Nicosia, Cyprus 1: 198-204.

    Google Scholar 

  3. 3.

    Hult T, Mohammed A: MIMO antenna applications for LEO satellite communications. Proceedings of the 3rd ESA International Workshop of the European COST 280, June 2005, Prague, Czech Republic

    Google Scholar 

  4. 4.

    Yamashita F, Kobayashi K, Ueba M, Umehira M: Broadband multiple satellite MIMO system. Proceedings of the 62nd IEEE Vehicular Technology Conference (VTC '05), September 2005, Dallas, Tex, USA 4: 2632-2636.

    Google Scholar 

  5. 5.

    Liolis K, Panagopoulos A, Cottis P: Outage capacity statistics of MIMO satellite networks operating at Ka band and above. Proceedings of the 12th Ka and Broadband Communications Conference, September 2006, Naples, Italy

    Google Scholar 

  6. 6.

    Mietzner J, Hoeher PA: Distributed space-time codes for cooperative wireless networks in the presence of different propagation delays and path losses. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2004, Barcelona, Spain 264-268.

    Google Scholar 

  7. 7.

    Laneman JN, Wornell GW: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 2003,49(10):2415-2425. 10.1109/TIT.2003.817829

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Janani M, Hedayat A, Hunter TE, Nosratinia A: Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Transactions on Signal Processing 2004,52(2):362-371. 10.1109/TSP.2003.821100

    MathSciNet  Article  Google Scholar 

  9. 9.

    Sendonaris A, Erkip E, Aazhang B: User cooperation diversity—part I: system description. IEEE Transactions on Communications 2003,51(11):1927-1938. 10.1109/TCOMM.2003.818096

    Article  Google Scholar 

  10. 10.

    Sendonaris A, Erkip E, Aazhang B: User cooperation diversity—part II: implementation aspects and performance analysis. IEEE Transactions on Communications 2003,51(11):1939-1948. 10.1109/TCOMM.2003.819238

    Article  Google Scholar 

  11. 11.

    Cheng HT, Mheidat H, Uysal M, Lok TM: Distributed space-time block coding with imperfect channel estimation. Proceedings of the IEEE International Conference on Communications (ICC '05), May 2005, Seoul, South Korea 1: 583-587.

    Google Scholar 

  12. 12.

    Svantesson T, Jensen MA, Wallace JW: Analysis of electromagnetic field polarizations in multiantenna systems. IEEE Transactions on Wireless Communications 2004,3(2):641-646. 10.1109/TWC.2003.821146

    Article  Google Scholar 

  13. 13.

    Getu BN, Andersen JB: The MIMO cube—a compact MIMO antenna. IEEE Transactions on Wireless Communications 2005,4(3):1136-1141.

    Article  Google Scholar 

  14. 14.

    Dong L, Choo H, Heath RW Jr., Ling H: Simulation of MIMO channel capacity with antenna polarization diversity. IEEE Transactions on Wireless Communications 2005,4(4):1869-1873.

    Article  Google Scholar 

  15. 15.

    Horváth P, Frigyes I: Application of the 3D polarization concept in satellite MIMO systems. Proceedings of the 49th Annual IEEE Global Telecommunications Conference (GLOBECOM '06), November-December 2006, San Francisco, Calif, USA

    Google Scholar 

  16. 16.

    Horváth P, Frigyes I: Investigation of the polarization properties of satellite channels with multiple antennas. Proceedings of the 1st European Conference on Antennas and Propagation (EuCAP '06), November 2006, Nice, France

    Google Scholar 

  17. 17.

    Elia P, Kumar P: Constructions of cooperative diversity schemes for asynchronous wireless networks. Proceedings of IEEE International Symposium on Information Theory, July 2006, Seattle, Wash, USA 2724-2728.

    Google Scholar 

  18. 18.

    Wei S, Goeckel DL, Valenti MC: Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications 2006,5(6):1547-1557.

    Article  Google Scholar 

  19. 19.

    Frigyes I, Horváth P: Polarization-time coding in satellite links. IEEE Satellite and Space Newsletter 2005,15(2):6-8.

    Google Scholar 

  20. 20.

    Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998,16(8):1451-1458. 10.1109/49.730453

    Article  Google Scholar 

  21. 21.

    Frigyes I, Molnár BG, Herczku Z, Bodnár Z: Antenna gain and polarization effects in wireless links—accent on LEO satellites. Space Communications 2004,19(3-4):199-208.

    Google Scholar 

  22. 22.

    Cavdar IH, Dincer H, Erdogdu K: Propagation measurements at L-band for land mobile satellite link design. Proceedings of the 7th Mediterranean Electrotechnical Conference (MELECON '94), April 1994, Antalya, Turkey 3: 1162-1165.

    Article  Google Scholar 

  23. 23.

    King PR, Stavrou S: Low elevation wideband land mobile satellite MIMO channel characteristics. to appear in IEEE Transactions on Wireless Communications

  24. 24.

    King PR, Stavrou S: Capacity improvement for a land mobile single satellite MIMO system. IEEE Antennas and Wireless Propagation Letters 2006,5(1):98-100.

    Article  Google Scholar 

  25. 25.

    Born M, Wolf E: Principles of Optics. Cambridge University Press, Cambridge, UK; 1998.

    Google Scholar 

  26. 26.

    Han D, Kim YS, Noz ME: Stokes parameters as a Minkowskian four-vector. Physical Review E 1997,56(5):6065-6076. 10.1103/PhysRevE.56.6065

    Article  Google Scholar 

  27. 27.

    Andrews MR, Mitra PP, de Carvalho R: Tripling the capacity of wireless communications using electromagnetic polarization. Nature 2001,409(6818):316-318. 10.1038/35053015

    Article  Google Scholar 

  28. 28.

    Gil JJ, Correas JM, Melero PA, Ferreira C: Generalized polarization algebra. http://www.unizar.es/galdeano/actas_pau/PDFVIII/pp161-167.pdf

  29. 29.

    Marzetta TL: Fundamental limitations on the capacity of wireless links that use polarimetric antenna arrays. Proceedings of IEEE International Symposium on Information Theory, June-July 2002, Lausanne, Switzerland 51.

    Google Scholar 

  30. 30.

    Taflove A, Hagness SC: Computational Electrodynamics: The Finite-Difference-Time-Domain Method. Artech House, Norwood, Mass, USA; 2006.

    Google Scholar 

  31. 31.

    Gesbert D, Shafi M, Shiu D-S, Smith PJ, Naguib A: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 2003,21(3):281-302. 10.1109/JSAC.2003.809458

    Article  Google Scholar 

  32. 32.

    Vaughan RG, Andersen JB: Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology 1987,36(4):149-172.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Péter Horváth.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Horváth, P., Karagiannidis, G.K., King, P.R. et al. Investigations in Satellite MIMO Channel Modeling: Accent on Polarization. J Wireless Com Network 2007, 098942 (2007). https://doi.org/10.1155/2007/98942

Download citation

Keywords

  • System Application
  • Channel Modeling
  • MIMO System
  • Diversity Gain
  • Cooperative Diversity