Skip to main content


  • Research Article
  • Open Access

Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

  • 1Email author,
  • 2,
  • 3,
  • 3 and
  • 1
EURASIP Journal on Wireless Communications and Networking20072007:098942

  • Received: 30 September 2006
  • Accepted: 19 March 2007
  • Published:


Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC) is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain) method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output) capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.


  • System Application
  • Channel Modeling
  • MIMO System
  • Diversity Gain
  • Cooperative Diversity


Authors’ Affiliations

Department of Broadband Infocommunications and Electromagnetic Theory, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
Division of Telecommunications, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
Centre for Communication Systems Research, University of Surrey, Guildford, Surrey, GU2 7XH, UK


  1. Bodnar Z, Herczku Z, Berces J, et al.: A detailed experimental study of the LEO satellite to indoor channel characteristics. International Journal of Wireless Information Networks 1999,6(2):79-91. 10.1023/A:1018887418259View ArticleGoogle Scholar
  2. King PR, Evans BG, Stavrou S: Physical-statistical model for the land mobile-satellite channel applied to satellite/HAP MIMO. Proceedings of the 11th European Wireless Conference, April 2005, Nicosia, Cyprus 1: 198-204.Google Scholar
  3. Hult T, Mohammed A: MIMO antenna applications for LEO satellite communications. Proceedings of the 3rd ESA International Workshop of the European COST 280, June 2005, Prague, Czech RepublicGoogle Scholar
  4. Yamashita F, Kobayashi K, Ueba M, Umehira M: Broadband multiple satellite MIMO system. Proceedings of the 62nd IEEE Vehicular Technology Conference (VTC '05), September 2005, Dallas, Tex, USA 4: 2632-2636.Google Scholar
  5. Liolis K, Panagopoulos A, Cottis P: Outage capacity statistics of MIMO satellite networks operating at Ka band and above. Proceedings of the 12th Ka and Broadband Communications Conference, September 2006, Naples, ItalyGoogle Scholar
  6. Mietzner J, Hoeher PA: Distributed space-time codes for cooperative wireless networks in the presence of different propagation delays and path losses. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2004, Barcelona, Spain 264-268.Google Scholar
  7. Laneman JN, Wornell GW: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 2003,49(10):2415-2425. 10.1109/TIT.2003.817829MathSciNetView ArticleMATHGoogle Scholar
  8. Janani M, Hedayat A, Hunter TE, Nosratinia A: Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Transactions on Signal Processing 2004,52(2):362-371. 10.1109/TSP.2003.821100MathSciNetView ArticleGoogle Scholar
  9. Sendonaris A, Erkip E, Aazhang B: User cooperation diversity—part I: system description. IEEE Transactions on Communications 2003,51(11):1927-1938. 10.1109/TCOMM.2003.818096View ArticleGoogle Scholar
  10. Sendonaris A, Erkip E, Aazhang B: User cooperation diversity—part II: implementation aspects and performance analysis. IEEE Transactions on Communications 2003,51(11):1939-1948. 10.1109/TCOMM.2003.819238View ArticleGoogle Scholar
  11. Cheng HT, Mheidat H, Uysal M, Lok TM: Distributed space-time block coding with imperfect channel estimation. Proceedings of the IEEE International Conference on Communications (ICC '05), May 2005, Seoul, South Korea 1: 583-587.Google Scholar
  12. Svantesson T, Jensen MA, Wallace JW: Analysis of electromagnetic field polarizations in multiantenna systems. IEEE Transactions on Wireless Communications 2004,3(2):641-646. 10.1109/TWC.2003.821146View ArticleGoogle Scholar
  13. Getu BN, Andersen JB: The MIMO cube—a compact MIMO antenna. IEEE Transactions on Wireless Communications 2005,4(3):1136-1141.View ArticleGoogle Scholar
  14. Dong L, Choo H, Heath RW Jr., Ling H: Simulation of MIMO channel capacity with antenna polarization diversity. IEEE Transactions on Wireless Communications 2005,4(4):1869-1873.View ArticleGoogle Scholar
  15. Horváth P, Frigyes I: Application of the 3D polarization concept in satellite MIMO systems. Proceedings of the 49th Annual IEEE Global Telecommunications Conference (GLOBECOM '06), November-December 2006, San Francisco, Calif, USAGoogle Scholar
  16. Horváth P, Frigyes I: Investigation of the polarization properties of satellite channels with multiple antennas. Proceedings of the 1st European Conference on Antennas and Propagation (EuCAP '06), November 2006, Nice, FranceGoogle Scholar
  17. Elia P, Kumar P: Constructions of cooperative diversity schemes for asynchronous wireless networks. Proceedings of IEEE International Symposium on Information Theory, July 2006, Seattle, Wash, USA 2724-2728.Google Scholar
  18. Wei S, Goeckel DL, Valenti MC: Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications 2006,5(6):1547-1557.View ArticleGoogle Scholar
  19. Frigyes I, Horváth P: Polarization-time coding in satellite links. IEEE Satellite and Space Newsletter 2005,15(2):6-8.Google Scholar
  20. Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998,16(8):1451-1458. 10.1109/49.730453View ArticleGoogle Scholar
  21. Frigyes I, Molnár BG, Herczku Z, Bodnár Z: Antenna gain and polarization effects in wireless links—accent on LEO satellites. Space Communications 2004,19(3-4):199-208.Google Scholar
  22. Cavdar IH, Dincer H, Erdogdu K: Propagation measurements at L-band for land mobile satellite link design. Proceedings of the 7th Mediterranean Electrotechnical Conference (MELECON '94), April 1994, Antalya, Turkey 3: 1162-1165.View ArticleGoogle Scholar
  23. King PR, Stavrou S: Low elevation wideband land mobile satellite MIMO channel characteristics. to appear in IEEE Transactions on Wireless CommunicationsGoogle Scholar
  24. King PR, Stavrou S: Capacity improvement for a land mobile single satellite MIMO system. IEEE Antennas and Wireless Propagation Letters 2006,5(1):98-100.View ArticleGoogle Scholar
  25. Born M, Wolf E: Principles of Optics. Cambridge University Press, Cambridge, UK; 1998.Google Scholar
  26. Han D, Kim YS, Noz ME: Stokes parameters as a Minkowskian four-vector. Physical Review E 1997,56(5):6065-6076. 10.1103/PhysRevE.56.6065View ArticleGoogle Scholar
  27. Andrews MR, Mitra PP, de Carvalho R: Tripling the capacity of wireless communications using electromagnetic polarization. Nature 2001,409(6818):316-318. 10.1038/35053015View ArticleGoogle Scholar
  28. Gil JJ, Correas JM, Melero PA, Ferreira C: Generalized polarization algebra.
  29. Marzetta TL: Fundamental limitations on the capacity of wireless links that use polarimetric antenna arrays. Proceedings of IEEE International Symposium on Information Theory, June-July 2002, Lausanne, Switzerland 51.View ArticleGoogle Scholar
  30. Taflove A, Hagness SC: Computational Electrodynamics: The Finite-Difference-Time-Domain Method. Artech House, Norwood, Mass, USA; 2006.Google Scholar
  31. Gesbert D, Shafi M, Shiu D-S, Smith PJ, Naguib A: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 2003,21(3):281-302. 10.1109/JSAC.2003.809458View ArticleGoogle Scholar
  32. Vaughan RG, Andersen JB: Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology 1987,36(4):149-172.View ArticleGoogle Scholar


© Péter Horváth et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.