 Research Article
 Open Access
Ergodic Capacity for the SIMO Nakagami Channel
 Efstathios D. Vagenas^{1}Email author,
 Petros Karadimas^{1} and
 Stavros A. Kotsopoulos^{1}
https://doi.org/10.1155/2009/802067
© Efstathios D. Vagenas et al. 2009
 Received: 10 February 2009
 Accepted: 1 July 2009
 Published: 19 August 2009
Abstract
This paper presents closedform expressions for the ergodic channel capacity of SIMO (singleinput and multiple output) wireless systems operating in a Nakagami fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closedform expressions for the capacity of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC), and switch and stay (SSC) diversity systems operating in Nakagami fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.
Keywords
 Fading Channel
 Channel Capacity
 Diversity Technique
 Maximal Ratio Combine
 Ergodic Capacity
1. Introduction
In recent years, the use of multiantenna systems provides large spectral efficiency for wireless communications in the presence of multipath fading environments. Multiple antennas can be used at the transmitter (MISO), the receiver (SIMO), or at both of them (MIMO). A SIMO system can be viewed as an antenna diversity scheme (diversity in space). Also, diversity combining is known to be a powerful technique to improve system performance in the presence of fading [1].
Several papers have been published regarding the capacity of SIMO systems operating in Nakagami environments. In [2], the channel capacity of a SIMO system in a Nakagamim fading channel is presented with the assumption that all links between transmit and receive antennas are independent and identically distributed (i.i.d.). In [3], capacity with MRC and optimal power and rate adaptation is presented while in [4] Shannon capacity with MRC is derived. In both of them, the assumption that all links are correlated and not identically distributed Nakagami holds. In [5], capacity of Nakagamim multipath fading channels with MRC was studied for different power and rate adaptation policies. Also, simple capacity formulas for correlated SIMO Nakagamim channels were derived in [6]. In [7], an analytical expression for the capacity of SIMO systems over nonidentically independent Nakagamim channels was derived. Significant work has been done in [8], where ergodic capacities of MRC, EGC, SC, and SSC of dual branch diversity systems are presented in closedform expressions. The capacity expressions were obtained by assuming correlated and identically distributed Nakagamim links.
In this paper, we examine the ergodic capacity of a SIMO system operating in independent Nakagamim channels. Specifically we derive closedform expressions for the ergodic capacity of dual EGC, SC, and SSC systems. For the EGC and SSC cases, we extend the work in [8] by allowing the parameter m of the Nakagamim distribution to take noninteger values. Moreover for the SSC case, a compact and quite flexible formula of the ergodic capacity for integer values of m is presented. For the SC case, we present a new expression for the ergodic capacity with the assumption that the Nakagami branches are not identical. Finally, we present for the first time in international literature the ergodic capacity of a SIMO system without using any diversity combining technique over independent nonidentical Nakagamim branches. In addition, it is shown that when the number of receive antennas is large, the ergodic capacity of such a system can be very well approximated by the ergodic capacity of a Rayleigh channel.
The remaining of this paper is organized as follows. Section 2 introduces a SIMO system. Section 3 examines the ergodic capacity for each diversity scheme and for the case where none of diversity technique is applied. Section 4 presents some results, and Section 5 draws the conclusion.
2. System Description
Consider a SIMO system with receive antennas operating in independent Nakagamim channels. The total power of the complex transmitted signal at a symbol period is constrained to be . The received signal vector at a random symbol period, assuming that the channel is constant over a symbol period, is given in a baseband representation as
where is the complex channelgain vector ( means matrix transposition), is the complex antennagain vector, and n is the zeromean complex additive white Gaussian (AWGN) vector with i.i.d. entries and variance . The received signal can be written as
where , and . Thus, the received signaltonoise ratio (SNR) over a symbol period is
Assuming that the fading process is ergodic, the ergodic channel capacity is
where is the bandwidth of the channel, denotes the ensemble average over , and is the probability density function (PDF) of the SNR .
3. Ergodic Channel Capacity
For all the cases listed below, we will assume that all links between transmitter and receivers are Nakagamim distributed. From [9], their PDF is
where is the Gamma function [10, eqution (8.310.1)], , and .
3.1. Ergodic Channel Capacity of Nakagamim Fading Channel with MRC
Taking into account the above system description and assuming that the receiver has full channel state information (CSI), we choose the phases of , appeared in (2), as . Also we choose . This means that all the signals at the receiver can be added cophasely and weighted according to the channel gain. Thus, (3) becomes
This SNR arises from the MRC diversity technique [1, equation (9.1)]. Substituting the PDF of (6) in (4) gives the ergodic capacity of the Nakagamim fading channel using MRC. Closedform expressions have been presented in [3, equation (20)], [4, equation (16)] for the general case where links are correlated and not identically Nakagamim distributed. If the links follow i.i.d. Nakagamim variables, the referred equations reduce to [2, equation (36)]. When the parameter of i.i.d Nakagamim branches takes integer values, the ergodic capacity is given by [5, equation (26)]. A good approximation for the ergodic capacity, where links are independent and not identically distributed, was given in [7, equation (16)]. Also a useful expression for the PDF of for correlated and not identically distributed links can be found in [11, equation (18)].
3.2. Ergodic Channel Capacity of Nakagamim Fading Channel with Coherent EGC
Taking into account the system description discussed in Section 2 and assuming that the receiver has full CSI, we choose phases and modulus , appeared in (2), as , for all . Thus (3) becomes
This SNR arises using the coherent EGC diversity technique [1, equation (9.188)]. Substituting the PDF of (7) in (4) gives the ergodic capacity of the Nakagamim fading channel using coherent EGC diversity technique. Finding analytically the PDF of (7) and consequently the channel capacity seems to be a very difficult problem. In [12], the sum of i.i.d Nakagamim variables was studied.
The PDF of the sum of two i.i.d. Nakagamim variables is given by [12, equation (4)]. From [13, page 130], we obtain the PDF transformation for two random variables , related as . Using that PDF transformation in (7) (here ) with the help of [12, equation (4)], we calculate the PDF of the SNR . Thus, the PDF of the SNR of a dual branch EGC system over i.i.d. Nakagamim fading channels can be written as
where is the average received SNR, and denotes the confluent hypergeometric series, as in [10, equation (9.21.1)]. Closedform expressions for the capacity of a dual branch equal gain combiner with correlated identically distributed Nakagamim branches have been presented in [8, equation (8)]. In the following paragraph, we extend that ergodic capacity expression for i.i.d. Nakagamim branches where the Nakagami parameter m is not necessarily an integer.
The ergodic capacity of a dualbranch EGC system over i.i.d. Nakagamim fading channels ( and ) is given by (see Appendix A)
where is a generalized hypergeometric series, [10, equation (9.14.1)], and denotes the digamma function, [10, equation (8.36.1)]. For integer values of the parameter m, (9) is reduced to (see Appendix A)
where is the upper incomplete gamma function, as in [10, equation (8.350.2)]. Taking into account [12, equations (8), (9) and (10)] and following the same procedure as in Appendix A (derivation of (9), (10)), we can derive the ergodic capacity of an equal gain combiner for three, four, and M i.i.d Nakagamim branches. However it is impractical for the purpose of this paper to present all those tedious mathematical formulations. Nevertheless the impact of diversity on the capacity can be clearly depicted by using two branch schemes.
3.3. Ergodic Channel Capacity of Nakagamim Fading Channel with SC
We assume a combiner that chooses the branch with the highest SNR (or equivalently with the strongest signal assuming equal noise power among the branches). Thus, we choose the antenna gains appearing in (2) as if for all and 0 otherwise. Thus, (3) becomes
This is the widely known SC diversity technique as in [1, Chapter (9.8)]. The PDF of the SNR of two correlated identically distributed Nakagamim channels is given in [1, equation (9.235)], and the resulting ergodic capacity for m integer is presented in [8, equation (19)].
From [14, equation (14)] and using the PDF transformation for two random variables , related as (here ), we can calculate the PDF of the SNR of two independent and not identically distributed Nakagamim branches as follows:
where , , and is the lower incomplete gamma function, [10, equation (8.350.1)].
In order to find the ergodic capacity of a dual SC system, we have to solve the integral resulting by substituting (12) in (4). Unfortunately, this integral cannot be solved analytically when the Nakagami parameters , take noninteger values. But, assuming that , take integer values, the ergodic capacity of a dualbranch SC system over independent nonidentically distributed Nakagamim fading channels is given by (see Appendix A)
If the branches are identically distributed ( and ), (13) reduces to
3.4. Ergodic Channel Capacity of Nakagamim Fading Channel with SSC
We consider a diversity system, for which, when the SNR of the currently connected branch falls below a predetermined threshold, the receiver switches to and stays with another branch, regardless of whether the SNR of that branch is above or below the predetermined threshold. This is the widely known SSC diversity technique as in [1, page 419]. In particular, we choose the antenna gains appearing in (2) as if the SNR at the branch is above a predetermined threshold and 0 otherwise. If the SNR at the branch is below the predetermined threshold , then we choose randomly an where , .
The PDF of the resulting SNR of a dualbranch SSC system over two i.i.d. Nakagamim channels is given in [1, equation (9.276)]
where .
The ergodic capacity of a dualbranch SSC system over i.i.d. Nakagamim fading channels is given by (see Appendix A)
where is Meijer's function as defined in [10, page 1032]. For integer values of the parameter m, (16) is reduced to (see Appendix A)
3.5. Ergodic Channel Capacity of Nakagamim Fading Channel with No Diversity Combining Technique
We suppose that the receiver has no CSI and no complexity (cannot make any signal processing). Thus, the system operates without any diversity technique used. Thus, for all i and the random variable (appearing in (3)) is a sum of Nakagamim random phase vectors. Consequently, (3) becomes
In order to find the PDF of (18), the PDF of the modulus of the sum of Nakagamim random phase vectors is necessary. In [15], that PDF was derived for integer values of the Nakagami parameter m. Using that result, we write the modulus of the sum of Nakagamim random phase vectors as a sum of weighted Nakagamim PDFs (see Appendix B).
Thus, using in (18) the PDF transformation for two random variables , related as (here ), we can derive with the help of (B.6) the PDF of the SNR as a sum of weighted gamma PDFs, that is,
where is the PDF of a gammadistributed random variable as in [13, page 87]. The ergodic channel capacity of a SIMO system without any diversity technique, over independent nonidentically distributed Nakagamim branches, is given by (see Appendix A)
Herein we will examine the case that the number of receive antennas is large. In that case the random variable (appearing in (3)) tends to be a complex Gaussian random variable, according to the Central Limit Theorem [13, page 278], that is,
where and are the quadrature components of a Nakagamim vector which follow the PDF according to [16, equation (6)]. That PDF has zero mean, and its variance equals to . According to the Central Limit Theorem, and are zero mean Gaussian random variables with variance . Thus, can be approximated by a Rayleigh distribution, as defined in [13, page 90], with its parameter . Taking into account the random variables transformation in (18), the resulting SNR follows an exponential distribution [13, page 85], that is,
where . Substituting (22) in (4) and using Theorem 3, we obtain
Thus, when L is large (asymptotic analysis), the ergodic capacity of the SIMO system can be approximated by the simple formula of (23), which is in fact the capacity of a Rayleigh channel [2, equations (21), (22)].
4. Results
5. Conclusions
Table 1
Notation  Description 

 Total power of a transmitted symbol 
 Variance of Gaussian noise 
 Received SNR 
 Ergodic capacity 
 Bandwidth 
 Average received SNR 
 predetermined threshold of SNR 
 PDF of received SNR 
 
 
 Meijer'sG function, [10, page 1032] 
 
 

Declarations
Authors’ Affiliations
References
 Simon MK, Alouini MS: Digital Communications over Fading Channels. John Wiley & Sons, New York, NY, USA; 2005.Google Scholar
 Zheng F, Kaiser T: On the channel capacity of multiantenna systems with nakagami fading. EURASIP Journal on Applied Signal Processing 2006, 2006:11.Google Scholar
 Alouini MS, Abdi A, Kaveh M: Sum of gamma variates and performance of wireless communication systems over Nakagamifading channels. IEEE Transactions on Vehicular Technology 2001, 50(6):14711480. 10.1109/25.966578View ArticleGoogle Scholar
 Karagiannidis GK, Sagias NC, Tsiftsis TA:Closedform statistics for the sum of squared Nakagami variates and its applications. IEEE Transactions on Communications 2006, 54(8):13531359.View ArticleGoogle Scholar
 Alouini MS, Goldsmith AJ: Capacity of Nakagami multipath fading channels. Proceedings of the 47th IEEE Vehicular Technology Conference (VTC '97), May 1997, Phoenix, Ariz, USA 1: 358362.Google Scholar
 Zhang QT, Liu DP: Simple capacity formulas for correlated SIMO Nakagami channels. Proceedings of the 57th IEEE Vehicular Technology Conference (VTC '03), April 2003, Jeju, Korea 1: 554556.Google Scholar
 Magableh AM, Matalgah MM:Capacity of SIMO systems over nonidentically independent Nakagami channels. IEEE Sarnoff Symposium (SARNOFF '07), AprilMay 2007, Princeton, NJ, USA 15.Google Scholar
 Khatalin S, Fonseka JP:Capacity of correlated Nakagami fading channels with diversity combining techniques. IEEE Transactions on Vehicular Technology 2006, 55(1):142150. 10.1109/TVT.2005.861206View ArticleGoogle Scholar
 Nakagami M:The distribution—a general formula on intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation 1962, 40: 757768.Google Scholar
 Gradshteyn IS, Ryzhik IM: Table of Integrals, Series and Products. 7th edition. Academic Press, New York, NY, USA; 2007.MATHGoogle Scholar
 Win MZ, Winters JH: On maximal ratio combining in correlated Nakagami channels withunequal fading parameters and SNRs among branches: an analytical framework. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '99), September 1999, New Orleans, La, USA 10581064.Google Scholar
 Dharmawansa P, Rajatheva N, Ahmed K:On the distribution of the sum of Nakagami random variables. IEEE Transactions on Communications 2007, 55(7):14071416.View ArticleGoogle Scholar
 Papoulis A: Probability, Random Variables and Stohastic Processes. 4th edition. McGrawHill, New York, NY, USA;Google Scholar
 Fedele G, Izzo L, Tanda M: Dual diversity reception of Mary DPSK signals over Nakagami fading channels. Proceedings of the 6th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '95), September 1995, Toronto, Canada 3: 11951201.View ArticleGoogle Scholar
 Karagiannidis GK:A closedform solution for the distribution of the sum of Nakagami random phase vectors. IEEE Communications Letters 2006, 10(12):828830.View ArticleGoogle Scholar
 Fraidenraich G, Leveque O, Cioffi JM:On the MIMO channel capacity for the Nakagami Channel. Proceedings of IEEE Global Telecommunication Conference (GLOCOM '07), November 2007, Washington, DC, USA 36123616.Google Scholar
 Prudnikov AP, Brychkov YA, Marichev OI: Integrals and Series. Volume 1. Gordon and Breach Science, Amsterdam, The Netherlands; 1986.MATHGoogle Scholar
 Abramovitz M, Stegun IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th edition. Dover, New York, NY, USA; 1972.Google Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.