- Research Article
- Open Access
- Published:
Using MEMS Capacitive Switches in Tunable RF Amplifiers
EURASIP Journal on Wireless Communications and Networking volume 2006, Article number: 016518 (2006)
Abstract
A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and
GHz, and a tunable power amplifier (PA) at
GHz are simulated in
m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining
dB of gain and sub-
dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.
References
Yao JJ: RF MEMS from a device perspective. Journal of Micromechanics and Microengineerig 2000,10(4):R9-R38. 10.1088/0960-1317/10/4/201
Rebeiz GM, Muldavin JB: RF MEMS switches and switch circuits. IEEE Microwave Magazine 2001,2(4):59–71. 10.1109/6668.969936
Park JY, Kim GH, Chung KW, Bu JU: Fully integrated micromachined capacitive switches for RF applications. Proceedings of IEEE MTT-S International Microwave Symposium Digest, June 2000, Boston, Mass, USA 1: 283–286.
Rebeiz GM: RF MEMS: Theory, Design, and Technology. John Wiley & Sons, Hoboken, NJ, USA; 2003.
Dussopt L, Rebeiz GM: Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Transactions on Microwave Theory and Techniques 2003,51(4, part 1):1247–1256. 10.1109/TMTT.2003.809650
Muldavin JB, Rebeiz GM: High-isolation CPW MEMS shunt switches - part 1: modeling. IEEE Transactions on Microwave Theory and Techniques 2000,48(6):1045–1052. 10.1109/22.904743
Qian JY, Li GP, De Flaviis F: Parametric model of MEMS capacitive switch operating at microwave frequencies. Proceedings of IEEE MTT-S International Microwave Symposium Digest, June 2000, Boston, Mass, USA 2: 1229–1232.
Rose J, Roy L, Tait N: Development of a MEMS microwave switch and application to adaptive integrated antennas. Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE '03), May 2003, Montreal, Canada 3: 1901–1904.
Li Z, Kenneth KO: A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator. IEEE Journal of Solid-State Circuits 2005,40(6):1296–1302.
Wuen W-S, Wen K-A: Dual-band switchable low noise amplifier for 5-GHz wireless LAN radio receivers. Proceedings of the 45th IEEE Midwest Symposium on Circuits and Systems (MWSCAS '02), August 2002, Tulsa, Okla, USA 2: 258–261.
Hashemi H, Hajimiri A: Concurrent dual-band CMOS low noise amplifiers and receiver architectures. Proceedings of the IEEE Symposium on VLSI Circuits, June 2001, Kyoto, Japan 247–250.
Tsang TKK, El-Gamal MN: Dual-band sub-1V CMOS LNA for 802.11A/B WLAN applications. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '03), May 2003, Bangkok, Thailand 1: 217–220.
Lu L-H, Hsieh H-H, Wang Y-S: A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier. IEEE Microwave Wireless Components Letters 2005,15(10):685–687.
Fong KL: Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications. Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC '99), February 1999, San Francisco, Calif, USA 224–225.
Schmidt A, Catala S: A universal dual band LNA implementation in SiGe technology for wireless applications. IEEE Journal of Solid-State Circuits 2001,36(7):1127–1131. 10.1109/4.933471
Wang M-Y, Sheen RR-B, Chen OT-C, Tsen RYJ: A dualband RF front-end for WCDMA and GPS applications. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '02), May 2002, Scottsdale, Ariz, USA 4: 113–116.
Shaeffer DK, Lee TH: A 1.5 V, 1.5 GHz CMOS low noise amplifier. Proceedings of the IEEE Symposium on VLSI Circuits, June 1996, Honolulu, Hawaii, USA 32–33.
Shaeffer DK, Lee TH: Erratum: a 1.5 V, 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid-State Circuits 2005,40(6):1397–1398.
Hanington G, Chen P-F, Asbeck PM, Larson LE: High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. IEEE Transactions on Microwave Theory and Techniques 1999,47(8):1471–1476. 10.1109/22.780397
Sahu B, Rincon-Mora GA: A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply. IEEE Transactions on Microwave Theory and Techniques 2004,52(1, part 1):112–120. 10.1109/TMTT.2003.821256
Srirattana N, Raghavan A, Heo D, Allen PE, Laskar J: Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications. IEEE Transactions on Microwave Theory and Techniques 2005,53(3):852–859.
Cotler AC, Brown ER: The feasibility of a variable output matching circuit in a high-power SSPA. Proceedings of IEEE Radio and Wireless Conference, August 2002, Boston, Mass, USA 189–191.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Danson, J., Plett, C. & Tait, N. Using MEMS Capacitive Switches in Tunable RF Amplifiers. J Wireless Com Network 2006, 016518 (2006). https://doi.org/10.1155/WCN/2006/16518
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/WCN/2006/16518
Keywords
- Information System
- Input Power
- System Application
- Power Amplifier
- Noise Figure