Skip to main content

Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits

Abstract

This paper offers a review of simulation methods currently available for the transient and steady-state analysis of nonlinear RF and microwave circuits. The most general method continues to be the time-marching approach used in Spice, but more recent methods based on multiple time dimensions are particularly effective for RF and microwave circuits. We derive nodal formulations for the most widely used multiple time dimension methods. We put special emphasis on methods for the analysis of oscillators based in the warped multitime partial differential equations (WaMPDE) approach. Case studies of a Colpitts oscillator and a voltage controlled Clapp-Gouriet oscillator are presented and discussed. The accuracy of the amplitude and phase of these methods is investigated. It is shown that the exploitation of frequency-domain latency reduces the computational effort.

[1234567891011121314151617181920212223242526272829303132]

References

  1. 1.

    Roychowdhury J: Analyzing circuits with widely separated time scales using numerical PDE methods. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2001,48(5):578–594. 10.1109/81.922460

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Rizzoli V, Neri A, Mastri F, Lipparini A: A Krylov-subspace technique for the simulation of integrated RF/microwave subsystems driven by digitally modulated carriers. International Journal of RF and Microwave Computer-Aided Engineering 1999,9(6):490–505. 10.1002/(SICI)1099-047X(199911)9:6<490::AID-MMCE6>3.0.CO;2-D

    Article  Google Scholar 

  3. 3.

    Ngoya E, Larchevèque R: Envelop transient analysis: a new method for the transient and steady state analysis of microwave communication circuits and systems. Proceedings of IEEE MTT-S International Microwave Symposium Digest, June 1996, San Franscisco, Calif, USA 3: 1365–1368.

  4. 4.

    Kundert KS, White JK, Sangiovanni-Vincentelli A: An envelope-following method for the efficient transient simulation of switching power and filter circuits. Proceedings of IEEE International Conference on Computer-Aided Design (ICCAD '88), November 1988, Santa Clara, Calif, USA 446–449.

  5. 5.

    Brambilla A, Maffezzoni P: Envelope following method for the transient analysis of electrical circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2000,47(7):999–1008. 10.1109/81.855455

    Article  Google Scholar 

  6. 6.

    Carvalho NB, Pedro JC, Jang W, Steer MB: Nonlinear simulation of mixers for assessing system-level performance. International Journal of RF and Microwave Computer-Aided Engineering 2005,15(4):350–361. 10.1002/mmce.20091

    Article  Google Scholar 

  7. 7.

    Christoffersen CE, Alexander J: An adaptive time step control algorithm for nonlinear time domain envelope transient. Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, May 2004, Niagara Falls, Ontario, Canada 2: 0883–0886.

  8. 8.

    Roychowdhury J: Resolving fundamental issues of slowness in envelope simulation methods. International Journal of RF and Microwave Computer-Aided Engineering 2005,15(4):371–381. 10.1002/mmce.20093

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dautbegović E, Condon M, Brennan C: An efficient nonlinear circuit simulation technique. IEEE Transactions on Microwave Theory and Techniques 2005,53(2):548–555.

    Article  MATH  Google Scholar 

  10. 10.

    Sancho S, Suarez A, Chuan J: General envelope-transient formulation of phase-locked loops using three time scales. IEEE Transactions on Microwave Theory and Techniques 2004,52(4):1310–1320. 10.1109/TMTT.2004.825667

    Article  Google Scholar 

  11. 11.

    Steer MB, Chang C, Rhyne GW: Computer-aided analysis of nonlinear microwave circuits using frequency-domain nonlinear analysis techniques: the state of the art. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 1991,1(2):181–200. 10.1002/mmce.4570010206

    Article  Google Scholar 

  12. 12.

    Rizzoli V, Mastri F, Sgallari F, Spaletta G: Harmonic-balance simulation of strongly nonlinear very large-size microwave circuits by inexact Newton methods. Proceedings of IEEE MTT-S International Microwave Symposium Digest, June 1996, San Franscisco, Calif, USA 3: 1357–1360.

  13. 13.

    Asai H, Makino H: Frequency domain latency and relaxation-based harmonic analysis of nonlinear circuits. Proceedings of the 34th Midwest Symposium on Circuits and Systems, May 1991, Monterey, Calif, USA 1: 202–205.

  14. 14.

    Gourary MM, Rusakov SG, Ulyanov SL, Zharov MM, Gullapalli KK, Mulvaney BJ: A new technique to exploit frequency domain latency in harmonic balance simulators. Proceedings of the Conference on Asia South Pacific Design Automation, January 1999, Wanchai, Hong Kong 1: 65–68.

  15. 15.

    (Lana) Zhu L, Christoffersen CE: Adaptive harmonic balance analysis of oscillators using multiple time scales. Proceedings of 3rd International IEEE Northeast Workshop on Circuits and Systems (NEWCAS '05), June 2005, Quebec, Canada 187–190.

  16. 16.

    Kundert KS, White JK, Sangiovanni-Vincentelli A: Steady-State Methods for Simulating Analog and Microwave Circuits. Kluwer Academic, Boston, Mass, USA; 1990.

    Google Scholar 

  17. 17.

    Soveiko N, Nakhla MS: Steady-state analysis of multitone nonlinear circuits in wavelet domain. IEEE Transactions on Microwave Theory and Techniques 2004,52(3):785–797. 10.1109/TMTT.2004.823539

    Article  Google Scholar 

  18. 18.

    Wenzler A, Lueder E: Analysis of the periodic steady-state in nonlinear circuits using an adaptive function base. Proceedings of IEEE International Symposium on Circuits and Systems, July 1999, Orlando, Fla, USA 6: 1–4.

  19. 19.

    Roychowdhury J: A multitime circuit formulation for closely spaced frequencies. International Journal of RF and Microwave Computer-Aided Engineering 2005,15(4):382–393. 10.1002/mmce.20094

    MathSciNet  Article  Google Scholar 

  20. 20.

    Brambilla A, Maffezzoni P: Envelope-following method to compute steady-state solutions of electrical circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2003,50(3):407–417. 10.1109/TCSI.2003.808897

    MathSciNet  Article  Google Scholar 

  21. 21.

    Collado A, Ramírez F, Suarez A, Pascual JP: Harmonic-balance analysis and synthesis of coupled-oscillator arrays. IEEE Microwave and Wireless Components Letters 2004,14(5):192–194.

    Article  Google Scholar 

  22. 22.

    Narayan O, Roychowdhury J: Analyzing oscillators using multitime PDEs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2003,50(7):894–903. 10.1109/TCSI.2003.813976

    MathSciNet  Article  Google Scholar 

  23. 23.

    Gourary M, Ulyanov S, Zharov M, Rusakov S: Simulation of high-Q oscillators. Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD '98), November 1998, San Jose, Calif, USA 162–169.

  24. 24.

    Rizzoli V, Costanzo A, Neri A: Harmonic-balance analysis of microwave oscillators with automatic suppression of degenerate solution. Electronics Letters 1992,28(3):256–257. 10.1049/el:19920158

    Article  Google Scholar 

  25. 25.

    Chang C-R, Steer MB, Martin S, Reese E Jr.: Computer-aided analysis of free-running microwave oscillators. IEEE Transactions on Microwave Theory and Techniques 1991,39(10):1735–1745. 10.1109/22.88545

    Article  Google Scholar 

  26. 26.

    Ngoya E, Suarez A, Sommet R, Quéré R: Steady state analysis of free or forced oscillators by harmonic balance and stability investigation of periodic and quasi-periodic regimes. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 1995,5(3):210–223. 10.1002/mmce.4570050308

    Article  Google Scholar 

  27. 27.

    Narayan O, Roychowdhury J: Analyzing oscillators using multitime PDEs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2003,50(7):894–903. 10.1109/TCSI.2003.813976

    MathSciNet  Article  Google Scholar 

  28. 28.

    Brachtendorf HG, Welsch G, Laur R: A time-frequency algorithm for the simulation of the initial transient response of oscillators. Proceedings of IEEE International Symposium on Circuits and Systems, May-June 1998, Monterey, Calif, USA 6: 236–238.

  29. 29.

    (Lana) Zhu L, Christoffersen CE: Fast transient analysis of oscillators using multiple time scales with accurate initial conditions. Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, May 2005, Saskatoon, SK, Canada 718–721.

  30. 30.

    Larchevéque R, Ngoya E: Compressed transient analysis speeds up the periodic steady state analysis of nonlinear microwave circuits. Proceedings of IEEE MTT-S International Microwave Symposium Digest, June 1996, San Franscisco, Calif, USA 3: 1369–1372.

  31. 31.

    Spencer RR, Ghausi MS: Introduction to Electronic Circuit Design. Prentice Hall, Upper Saddle River, NJ, USA; 2003.

    Google Scholar 

  32. 32.

    Smith JA: Modern Communication Circuits. 2nd edition. McGraw-Hill, New York, NY, USA; 1997.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos E Christoffersen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, L.(., Christoffersen, C.E. Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits. J Wireless Com Network 2006, 032097 (2006). https://doi.org/10.1155/WCN/2006/32097

Download citation

Keywords

  • Differential Equation
  • Microwave
  • Information System
  • Partial Differential Equation
  • Multiple Time