Skip to main content

Energy-Efficient Medium Access Control Protocols for Wireless Sensor Networks

Abstract

A key challenge for wireless sensor networks is how to extend network lifetime with dynamic power management on energy-constraint sensor nodes. In this paper, we propose two energy-efficient MAC protocols: asynchronous MAC (A-MAC) protocol and asynchronous schedule-based MAC (ASMAC) protocol. A-MAC and ASMAC protocols are attractive due to their suitabilities for multihop networks and capabilities of removing accumulative clock-drifts without any network synchronization. Moreover, we build a traffic-strength- and network-density-based model to adjust essential algorithm parameters adaptively. Simulation results show that our algorithms can successfully acquire the optimum values of power-on/off duration, schedule-broadcast interval, as well as super-time-slot size and order. These algorithm parameters can ensure adequate successful transmission rate, short waiting time, and high energy utilization. Therefore, not only the performance of network is improved but also its lifetime is extended when A-MAC or ASMAC is used.

[12345678910111213141516171819202122232425262728293031323334353637]

References

  1. 1.

    Culler D, Estrin D, Srivastava M: Guest Editors' Introduction: overview of sensor networks. Computer 2004,37(8):41–49.

    Article  Google Scholar 

  2. 2.

    Zhao F, Guibas L: Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann, San Francisco, Calif, USA; 2004.

    Google Scholar 

  3. 3.

    Stemm M, Katz RH: Measuring and reducing energy consumption of network modules in hand-held devices. IEICE Transactions on Communications 1997,E80-B(8):1125–1131.

    Google Scholar 

  4. 4.

    Chou J, Petrovic D, Ramachandran K: A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks. Proceedings of 22nd Annual Joint Conference on the IEEE Computer and Communications Societies (INFOCOM '03), March-April 2003, San Francisco, Calif, USA 2: 1054–1062.

    Google Scholar 

  5. 5.

    Chebolu ML, Veeramachaneni VK, Jayaweera SK, Namuduri KR: An improved adaptive signal processing approach to reduce energy consumption in sensor networks. Proceedings of 38th Annual Conference on Information Science and System (CISS '04), March 2004, Princeton, NJ, USA

    Google Scholar 

  6. 6.

    Balasubramanian S, Elangovan I, Jayaweera SK, Namuduri KR: Distributed and collaborative tracking for energy-constrained ad-hoc wireless sensor networks. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '04), March 2004, Atlanta, Ga, USA 3: 1732–1737.

    Google Scholar 

  7. 7.

    Jayaweera SK: An energy-efficient virtual MIMO communications architecture based on V-BLAST processing for distributed wireless sensor networks. Proceedings of 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON '04), October 2004, Santa Clara, Calif, USA 299–308.

    Google Scholar 

  8. 8.

    Elson JE: Time synchronization in wireless sensor networks, Dissertation. Computer Science Department, University of California Los Angeles, Los Angeles, Calif, USA; 2003.

    Google Scholar 

  9. 9.

    Ma C, Ma M, Yang Y: Data-centric energy efficient scheduling for densely deployed sensor networks. Proceedings of IEEE International Conference on Communications, June 2004, Paris, France 6: 3652–3656.

    Google Scholar 

  10. 10.

    Singh S, Raghavendra CS: Pamas: power aware multi-access protocol with signaling for ad hoc networks. ACM SIGCOMM Computer Communication Review 1998,28(3):5–26. 10.1145/293927.293928

    Article  Google Scholar 

  11. 11.

    P802.11 : Ieee standard for wireless lan medium access control (mac) and physical layer (phy) specifications. November 1997

  12. 12.

    Hill JL, Culler DE: Mica: a wireless platform for deeply embedded networks. IEEE Micro 2002,22(6):12–24. 10.1109/MM.2002.1134340

    Article  Google Scholar 

  13. 13.

    Rajendran V, Obraczka K, Garcia-Luna-Aceves JJ: Energy-efficient, collision-free medium access control for wireless sensor networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys '03), November 2003, Los Angeles, Calif, USA 181–192.

    Google Scholar 

  14. 14.

    van Hoesel LFW, Nieberg T, Kip HJ, Havinga PJM: Advantages of a TDMA based, energy-efficient, self-organizing MAC protocol for WSNs. Proceedings of IEEE 59th Vehicular Technology Conference (VTC '04), May 2004, Milan, Italy 3: 1598–1602.

    Google Scholar 

  15. 15.

    Li J, Lazarou GY: A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks. Proceedings of 3rd International Symposium on Information Processing in Sensor Networks (IPSN '04), April 2004, Berkeley, Calif, USA 55–60.

    Google Scholar 

  16. 16.

    Biaz S, Barowski YD: GANGS: an energy efficient MAC protocol for sensor networks. Proceedings of the 42nd Annual Southeast Regional Conference (ACMSE '04), April 2004, Huntsville, Ala, USA 82–87.

    Google Scholar 

  17. 17.

    Ye W, Heidemann J, Estrin D: An energy-efficient MAC protocol for wireless sensor networks. Proceedings of 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '02), June 2002, New York, NY, USA 3: 1567–1576.

    Google Scholar 

  18. 18.

    Van Dam T, Langendoen K: An adaptive energy-efficient MAC protocol for wireless sensor networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys '03), November 2003, Los Angeles, Calif, USA 171–180.

    Google Scholar 

  19. 19.

    Polastre J, Hill J, Culler D: Versatile low power media access for wireless sensor networks. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys '04), November 2004, Baltimore, Md, USA 95–107.

    Google Scholar 

  20. 20.

    Jayashree S, Manoj BS, Murthy CSR: On using battery state for medium access control in ad hoc wireless networks. Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom '04), September-October 2004, Philadelphia, Pa, USA 360–373.

    Google Scholar 

  21. 21.

    Jung E-S, Vaidya NH: A power control MAC protocol for ad hoc networks. Proceedings of the 8th Annual International Conference on Mobile Computing and Networking (MobiCom '02), September 2002, Atlanta, Ga, USA 36–47.

    Google Scholar 

  22. 22.

    Bregni S: Synchronization of Digital Telecommunications Networks . John Wiley & Sons, New York, NY, USA; 2002.

    Google Scholar 

  23. 23.

    Cristian F: Probabilistic clock synchronization. Distributed Computing 1989,3(3):146–158. 10.1007/BF01784024

    MATH  Article  Google Scholar 

  24. 24.

    Gusella R, Zatti S: The accuracy of the clock synchronization achieved by TEMPO in Berkeley UNIX 4.3 BSD. IEEE Transactions on Software Engineering 1989,15(7):847–853. 10.1109/32.29484

    Article  Google Scholar 

  25. 25.

    Srikanth TK, Toueg SK: Optimal clock synchronization. Journal of the ACM 1987,34(3):626–645. 10.1145/28869.28876

    MathSciNet  Article  Google Scholar 

  26. 26.

    Su W, Akyildiz IF: Time-diffusion synchronization protocol for wireless sensor networks. IEEE/ACM Transactions on Networking 2005,13(2):384–397.

    Article  Google Scholar 

  27. 27.

    Mendel JM: Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE 1995,83(3):345–377. 10.1109/5.364485

    Article  Google Scholar 

  28. 28.

    Mamdani EH: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers 1977,26(12):1182–1191.

    MATH  Article  Google Scholar 

  29. 29.

    Mendel JM: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River, NJ, USA; 2001.

    Google Scholar 

  30. 30.

    Altrock CV: Fuzzy logic design: methodology, standards, and tools. Electronic Engineering Times July 1996.

    Google Scholar 

  31. 31.

    Bao LH, Garcia-Luna-Aceves JJ: Hybrid channel access scheduling in ad hoc networks. Proceedings of 10th IEEE International Conference on Network Protocols (ICNP '02), November 2002, Paris, France 46–57.

    Google Scholar 

  32. 32.

    Bertsekas D, Gallager R: Data Networks. Prentice-Hall, Upper Saddle River, NJ, USA; 1987.

    Google Scholar 

  33. 33.

    Carvalho MM, Garcia-Luna-Aceves JJ: Delay analysis of IEEE 802.11 in single-hop networks. Proceedings of 11th IEEE International Conference on Network Protocols (ICNP '03), November 2003, Atlanta, Ga, USA 146–155.

    Google Scholar 

  34. 34.

    Bianchi G: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 2000,18(3):535–547. 10.1109/49.840210

    Article  Google Scholar 

  35. 35.

    Manjeshwar A, Zeng Q-A, Agrawal DP: An analytical model for information retrieval in wireless sensor networks using enhanced APTEEN protocol. IEEE Transactions on Parallel and Distributed Systems 2002,13(12):1290–1302. 10.1109/TPDS.2002.1158266

    Article  Google Scholar 

  36. 36.

    Mhatre VP, Rosenberg C, Kofman D, Mazumdar R, Shroff N: A minimum cost heterogeneous sensor network with a lifetime constraint. IEEE Transactions on Mobile Computing 2005,4(1):4–14.

    Article  Google Scholar 

  37. 37.

    Heinzelman WB, Chandrakasan AP, Balakrishnan H: An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 2002,1(4):660–670. 10.1109/TWC.2002.804190

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qingchun Ren.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ren, Q., Liang, Q. Energy-Efficient Medium Access Control Protocols for Wireless Sensor Networks. J Wireless Com Network 2006, 039814 (2006). https://doi.org/10.1155/WCN/2006/39814

Download citation

Keywords

  • Sensor Node
  • Wireless Sensor Network
  • Medium Access Control
  • Network Lifetime
  • Power Management