Open Access

Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

EURASIP Journal on Wireless Communications and Networking20062006:040380

https://doi.org/10.1155/WCN/2006/40380

Received: 29 August 2005

Accepted: 3 April 2006

Published: 26 June 2006

Abstract

Two ultra-wideband (UWB) specifications, that is, direct-sequence (DS) UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM) UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN). Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC) algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

[12345678910111213141516171819202122232425262728293031]

Authors’ Affiliations

(1)
Beijing University of Posts and Telecommunications
(2)
Microsoft Research Asia
(3)
Hong Kong University of Science and Technology

References

  1. , January 2006 http://www.uwbforum.org
  2. Hämäläinen M, Saloranta J, Mäkelä J-P, Oppermann I, Patana T: Ultra-wideband signal impact on the performances of IEEE 802.11b and bluetooth networks. International Journal of Wireless Information Networks 2003,10(4):201-210.View ArticleGoogle Scholar
  3. Borah DK, Jana R, Stamoulis A: Performance evaluation of IEEE 802.11a wireless LANs in the presence of ultra-wideband interference. IEEE Wireless Communications and Networking 2003, 1: 83-87.Google Scholar
  4. Bellorado J, Ghassemzadeh SS, Greenstein LJ, Sveinsson T, Tarokh V: Coexistence of ultra-wideband systems with IEEE-802.1la wireless LANs. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '03), December 2003, San Francisco, Calif, USA 1: 410-414.View ArticleGoogle Scholar
  5. Giuliano R, Guidoni G, Mazzenga F, Vatalaro F: On the coexistence of UWB with fixed wireless access systems. Proceedings of the 8th International Conference on Personal Wireless Communications (PWC '03), September 2003, Venice, Italy, Lecture Notes in Computer Science 2775: 101-113.Google Scholar
  6. Hämäläinen M, Hovinen V, Tesi R, Iinatti JHJ, Latva-Aho M: On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS. IEEE Journal on Selected Areas in Communications 2002,20(9):1712-1721. 10.1109/JSAC.2002.805242View ArticleGoogle Scholar
  7. Corral CA, Emami S, Rasor G: In-band interference of multi-band OFDM systems. IEEE International Symposium on Spread Spectrum Techniques and Applications, August-September 2004, Leura, Australia 793-796.Google Scholar
  8. Ohno K, Ikebe T, Ikegami T: A proposal for an interference mitigation technique facilitating the coexistence of biphase UWB and other wideband systems. Proceedings of International Workshop on Joint UWBST & IWUWBS, May 2004, Kyoto, Japan 50-54.Google Scholar
  9. Sung CW, Wong WS: A noncooperative power control game for multirate CDMA data networks. IEEE Transactions on Wireless Communications 2003,2(1):186-194. 10.1109/TWC.2002.806394View ArticleGoogle Scholar
  10. Yates RD: A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications 1995,13(7):1341-1347. 10.1109/49.414651MathSciNetView ArticleGoogle Scholar
  11. Batra A, Balakrishnan J, Dabakand A, et al.: Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a. IEEE P802.15-03/268r3, March 2004Google Scholar
  12. Fisher R, Kohno R, Mc Laughlin M, et al.: DS-UWB Physical Layer Submission to 802.15 Task Group 3a. IEEE P802.15-04/0137r4, January 2005Google Scholar
  13. MultiBand OFDM Alliance SIG : MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a. , September 2004 http://www.multibandofdm.org/presentations.html
  14. Batra A, Balakrishnan J, Aiello GR, Foerster JR, Dabak A: Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques 2004,52(9, part I):2123-2138. 10.1109/TMTT.2004.834184View ArticleGoogle Scholar
  15. Muquet B, Wang Z, Giannakis GB, De Courville M, Duhamel P: Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications 2002,50(12):2136-2148. 10.1109/TCOMM.2002.806518View ArticleGoogle Scholar
  16. Suzuki M, Fujita C, Yotsuya M, Takamura K, Usui T: Techniques for MB-OFDM improvement. IEEE 15-03-0337-01-003a, September 2003Google Scholar
  17. Welborn M: DS-UWB Responses to TG3a Voter NO Comments. IEEE P802.15-05/0050r2, January 2005Google Scholar
  18. Ghassemzadeh SS, Greenstein L, Shin O, Tarokh V: Parameter assumptions for the simulation of the proposed 802.15.3a PHYs. DCN # 15-04-0488-00-003a, September 2004Google Scholar
  19. Mc Laughlin M: Detailed DS-UWB simulation results. IEEE P802.15-04/0483r5, November 2004Google Scholar
  20. Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.MATHGoogle Scholar
  21. Fisher R, Kohno R, Ogawa H, Zhang H, Takizawa K: Merger#2 Proposal DS-CDMA. IEEE 802.15-03/334r5, November 2003Google Scholar
  22. Foerster J: Channel Modeling Sub-committee Report Final. IEEE P802.15-02/490r1-SG3a, February 2003Google Scholar
  23. Ellis J, Siwiak K, Roberts R: TG3a Technical Requirements. IEEE P802.15-03/030r0, December 2002Google Scholar
  24. McCorkle J: DS-CDMA: The Technology of Choice for UWB. IEEE P802.15-03/277r0, July 2003Google Scholar
  25. Xiao M, Shroff NB, Chong EKP: A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Transactions on Networking 2003,11(2):210-221. 10.1109/TNET.2003.810314View ArticleGoogle Scholar
  26. Saraydar CU, Mandayam NB, Goodman DJ: Efficient power control via pricing in wireless data networks. IEEE Transactions on Communications 2002,50(2):291-303. 10.1109/26.983324View ArticleGoogle Scholar
  27. IEEE : Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs). IEEE Std 802.15.3TM-2003, September 2003Google Scholar
  28. Mitra D: An asynchoronous distributed algorithm for power control in cellular radio systems. Proceedings of 4th Winlab Workshop on Third Generation Wireless Information Network, October 1993, East Brunswick, NJ, USA 249-257.Google Scholar
  29. Welborn M: Extended Common Signaling Mode. IEEE 802.15-04/341r2, November 2004Google Scholar
  30. Bertsekas DP, Gallager R: Data Networks. 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 1992.MATHGoogle Scholar
  31. Radunovic B, Le Boudec J-Y: Rate performance objectives of multihop wireless networks. IEEE Transactions on Mobile Computing 2004,3(4):334-349. 10.1109/TMC.2004.45View ArticleGoogle Scholar

Copyright

© Yongjing Zhang et al. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.