Skip to main content

Asymptotic Analysis in MIMO MRT/MRC Systems


Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO) maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC) systems. One is the asymptotic error performance (in terms of SNR) in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users) in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.



  1. 1.

    Lo TKY: Maximum ratio transmission. IEEE Transactions on Communications 1999,47(10):1458-1461. 10.1109/26.795811

    Article  Google Scholar 

  2. 2.

    Dighe PA, Mallik RK, Jamuar SS: Analysis of transmit-receive diversity in Rayleigh fading. IEEE Transactions on Communications 2003,51(4):694-703. 10.1109/TCOMM.2003.810871

    Article  Google Scholar 

  3. 3.

    Dighe PA, Mallik RK, Jamuar SS: Analysis of K-transmit dual-receive diversity with cochannel interferers over a Rayleigh fading channel. Wireless Personal Communications 2003,25(2):87-100. 10.1023/A:1023699628908

    Article  Google Scholar 

  4. 4.

    Kang M, Alouini M-S: Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems. IEEE Journal on Selected Areas in Communications 2003,21(3):418-426. 10.1109/JSAC.2003.809720

    Article  Google Scholar 

  5. 5.

    Simon MK, Alouini M-S: Digital Communications over Fading Channels. John Wiley & Sons, New York, NY, USA; 2000.

    Google Scholar 

  6. 6.

    Khatri CG: Distribution of the largest or the smallest characteristic root under null hypothesis concerning complex multivariate normal populations. The Annals of Mathematical Statistics 1964,35(4):1807-1810. 10.1214/aoms/1177700403

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Viswanath P, Tse DNC, Laroia R: Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory 2002,48(6):1277-1294. 10.1109/TIT.2002.1003822

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Mun C, Lee M-W, Yook J-G, Park H-K: Exact capacity analysis of multiuser diversity combined with transmit diversity. Electronics Letters 2004,40(22):1423-1424. 10.1049/el:20046149

    Article  Google Scholar 

  9. 9.

    Chen C-J, Wang L-C: A unified capacity analysis for wireless systems with joint antenna and multiuser diversity in Nakagami fading channels. Proceedings of IEEE International Conference on Communications, June 2004, Paris, France 6: 3523-3527.

    Google Scholar 

  10. 10.

    Wang Z, Giannakis GB: A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications 2003,51(8):1389-1398. 10.1109/TCOMM.2003.815053

    Article  Google Scholar 

  11. 11.

    David HA, Nagaraja HN: Order Statistics. 3rd edition. John Wiley & Sons, New York, NY, USA; 2003.

    Google Scholar 

  12. 12.

    Galambos J: The Asymptotic Theory of Extreme Order Statistics. 2nd edition. John Wiley & Sons, New York, NY, USA; 1978.

    Google Scholar 

  13. 13.

    Sharif M, Hassibi B: On the capacity of MIMO broadcast channels with partial side information. IEEE Transactions on Information Theory 2005,51(2):506-522. 10.1109/TIT.2004.840897

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Jiang J, Buehrer RM, Tranter WH: Antenna diversity in multiuser data networks. IEEE Transactions on Communications 2004,52(3):490-497. 10.1109/TCOMM.2004.823637

    Article  Google Scholar 

  15. 15.

    Gozali R, Buehrer RM, Woerner BD: The impact of multiuser diversity on space-time block coding. IEEE Communications Letters 2003,7(5):213-215. 10.1109/LCOMM.2003.812182

    Article  Google Scholar 

  16. 16.

    Uzgoren NT: The asymptotic development of the distribution of the extreme values of a sample. In Studies in Mathematics and Mechanics Presented to Richard von Mises. Academic Press, New York, NY, USA; 1954:346-353.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Quan Zhou.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhou, Q., Dai, H. Asymptotic Analysis in MIMO MRT/MRC Systems. J Wireless Com Network 2006, 045831 (2006).

Download citation


  • Probability Density Function
  • Diversity System
  • Asymptotic Analysis
  • Good Insight
  • Error Performance