Skip to main content

Advertisement

Multiuser Interference Mitigation in Noncoherent UWB Ranging via Nonlinear Filtering

Article metrics

Abstract

Ranging with energy detectors enables low-cost implementation. However, any interference can be quite detrimental to range accuracy. We develop a method that performs nonlinear filtering on the received signal energy to mitigate multiuser interference (MUI), and we test it over time hopping and direct sequence impulse radio ultra-wideband signals. Simulations conducted over IEEE 802.15.4a residential line of sight ultrawideband multipath channels indicate that nonlinear filtering helps sustain range estimation accuracy in the presence of strong MUI.

[123456789101112131415161718192021222324252627282930313233]

References

  1. 1.

    Tarique Z, Malik WQ, Edwards DJ: Bandwidth requirements for accurate detection of direct path in multipath environment. Electronics Letters 2006,42(2):100-102. 10.1049/el:20063262

  2. 2.

    Win MZ, Chrisikos G, Sollenberger NR: Performance of Rake reception in dense multipath channels: implications of spreading bandwidth and selection diversity order. IEEE Journal on Selected Areas in Communications 2000,18(8):1516-1525. 10.1109/49.864015

  3. 3.

    Ellis J, et al.: IEEE P802.15.4a WPAN alternate PHY - PAR. January, 2004, doc.: IEEE 802.15-04/048r1. http://www.ieee802.org/15/pub/TG4a.html

  4. 4.

    Gezici S, Tian Z, Giannakis GB, et al.: Localization via ultra-wideband radios: a look at positioning aspects of future sensor networks. IEEE Signal Processing Magazine 2005,22(4):70-84.

  5. 5.

    Win MZ, Scholtz RA: Impulse radio: how it works. IEEE Communications Letters 1998,2(2):36-38. 10.1109/4234.660796

  6. 6.

    Reggiani L, Maggio GM: Rapid search algorithms for code acquisition in UWB impulse radio communications. IEEE Journal on Selected Areas in Communications 2005,23(5):898-908.

  7. 7.

    Yu J, Yao Y: Detection performance of time-hopping ultrawideband LPI waveforms. Proceedings of IEEE Sarnoff Symposium, April 2005, Princeton, NJ, USA

  8. 8.

    Tian Z, Giannakis GB: A GLRT approach to data-aided timing acquisition in UWB radios—part I: algorithms. IEEE Transactions on Wireless Communications 2005,4(6):2956-2967.

  9. 9.

    Tian Z, Giannakis GB: A GLRT approach to data-aided timing acquisition in UWB radios—part II: training sequence design. IEEE Transactions on Wireless Communications 2005,4(6):2994-3004.

  10. 10.

    Chung W, Ha D: An accurate ultra wideband (UWB) ranging for precision asset location. Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies (UWBST '03), November 2003, Reston, Va, USA 389-393.

  11. 11.

    Fleming R, Kushner C, Roberts G, Nandiwada U: Rapid acquisition for ultra-wideband localizers. Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies (UWBST '02), May 2002, Baltimore, Md, USA 245-249.

  12. 12.

    Lee J-Y, Scholtz RA: Ranging in a dense multipath environment using an UWB radio link. IEEE Journal on Selected Areas in Communications 2002,20(9):1677-1683. 10.1109/JSAC.2002.805060

  13. 13.

    Scholtz RA, Lee J-Y: Problems in modeling UWB channels. Proceedings of IEEE Conference Record of the Asilomar Conference on Signals, Systems and Computers, November 2002, Pacific Groove, Calif, USA 1: 706-711.

  14. 14.

    Mazzucco C, Spagnolini U, Mulas G: A ranging technique for UWB indoor channel based on power delay profile analysis. Proceedings of IEEE 59th Vehicular Technology Conference (VTC '04), May 2004, Milan, Italy 5: 2595-2599.

  15. 15.

    Guvenc I, Sahinoglu Z: TOA estimation with different IR-UWB transceiver types. Proceedings of IEEE International Conference on Ultra-Wideband (ICU '05), September 2005, Zurich, Switzerland 426-431.

  16. 16.

    Rabbachin A, Oppermann I: Synchronization analysis for UWB systems with a low-complexity energy collection receiver. Proceedings of International Workshop on Ultra Wideband Systems; Joint with Conference on Ultra Wideband Systems and Technologies, May 2004, Kyoto, Japan 288-292.

  17. 17.

    Yu K, Oppermann I: Performance of UWB position estimation based on time-of-arrival measurements. Proceedings of International Workshop on Ultra Wideband Systems; Joint with Conference on Ultra Wideband Systems and Technologies, May 2004, Kyoto, Japan 400-404.

  18. 18.

    Guvenc I, Sahinoglu Z: Threshold-based TOA estimation for impulse radio UWB systems. Proceedings of IEEE International Conference on Ultra-Wideband (ICU '05), September 2005, Zurich, Switzerland 420-425.

  19. 19.

    Guvenc I, Sahinoglu Z, Molisch AF, Orlik P: Non-coherent TOA estimation in IR-UWB systems with different signal waveforms. Proceedings of 1st IEEE/CreateNet International Workshop on Ultrawideband Wireless Networking (UWBNETS '05), July 2005, Boston, Mass, USA 245-251. (invited paper)

  20. 20.

    Guvenc I, Sahinoglu Z: Threshold selection for UWB TOA estimation based on kurtosis analysis. IEEE Communications Letters 2005,9(12):1025-1027. 10.1109/LCOMM.2005.1576576

  21. 21.

    Guvanc I, Sahinoglu Z: Multiscale energy products for TOA estimation in IR-UWB systems. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '05), November-December 2005, St. Louis, Mo, USA 1: 209-213.

  22. 22.

    Gezici S, Sahinoglu Z, Kobayashi H, Poor HV, Molisch AF: A two-step time of arrival estimation algorithm for impulse radio ultrawideband systems. Proceedings of 13th European Signal Processing Conference (EUSIPCO '05), September 2005, Antalya, Turkey

  23. 23.

    Gezici S, Sahinoglu Z, Kobayashi H, Poor HV: Ultra wideband geolocation. In Ultrawideband Wireless Communications. John Wiley & Sons, New York, NY, USA; 2005.

  24. 24.

    Merz R, Botteron C, Farine PA: Multiuser interference during synchronization phase in UWB impulse radio. Proceedings of IEEE International Conference on Ultra-Wideband (ICU '05), September 2005, Zurich, Switzerland 661-666.

  25. 25.

    Gezici S, Kobayashi H, Poor HV: A comparative study of pulse combining schemes for impulse radio UWB systems. Proceedings of IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication, April 2004, Princeton, NJ, USA 7-10.

  26. 26.

    Gezici S, Kobayashi H, Poor HV, Molisch AF: Optimal and suboptimal linear receivers for time-hopping impulse radio systems. Proceedings of International Workshop on Ultra Wideband Systems; Joint with Conference on Ultra Wideband Systems and Technologies, May 2004, Kyoto, Japan 11-15.

  27. 27.

    Lovelace WM, Townsend JK: Chip discrimination for large near far power ratios in UWB networks. Proceedings of IEEE Military Communications Conference (MILCOM '03), 2003 2: 868-873.

  28. 28.

    Fishler E, Poor HV: Low complexity multi-user detectors for time hopping implse radio systems. IEEE Transactions on Signal Processing 2004,52(9):2561-2571. 10.1109/TSP.2004.832017

  29. 29.

    Molisch AF, Balakrishnan K, Cassioli D, et al.: IEEE 802.15.4a channel model—final report. 2005.http://www.ieee802.org/15/pub/TG4a.html doc: IEEE 802.15-04-0662-02-004a.

  30. 30.

    Şenel HG, Peters RA II, Dawant B: Topological median filters. IEEE Transactions on Image Processing 2002,11(2):89-104. 10.1109/83.982817

  31. 31.

    Gallagher NC Jr., Wise GL: Theoretical analysis of the properties of median filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981,29(6):1136-1141. 10.1109/TASSP.1981.1163708

  32. 32.

    Kay SM: Fundamentals of Statistical Signal Processing: Detection Theory. Prentice Hall, Upper Saddle River, NJ, USA; 1998.

  33. 33.

    Yin L, Yang R, Gabbouj M, Neuvo Y: Weighted median filters: a tutorial. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1996,43(3):157-192. 10.1109/82.486465

Download references

Author information

Correspondence to Zafer Sahinoglu.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Information System
  • Receive Signal
  • Direct Sequence
  • System Application
  • Estimation Accuracy