Skip to main content

Routing and Power Allocation in Asynchronous Gaussian Multiple-Relay Channels

Abstract

We investigate the cooperation efficiency of the multiple-relay channel when carrier-level synchronization is not available and all nodes use a decode-forward scheme. We show that by using decode-forward relay signaling, the transmission is effectively interference-free even when all communications share one common physical medium. Furthermore, for any channel realization, we show that there always exist a sequential path and a corresponding simple power allocation policy, which are optimal. Although this does not naturally lead to a polynomial algorithm for the optimization problem, it greatly reduces the search space and makes finding heuristic algorithms easier. To illustrate the efficiency of cooperation and provide prototypes for practical implementation of relay-channel signaling, we propose two heuristic algorithms. The numerical results show that in the low-rate regime, the gain from cooperation is limited, while the gain is considerable in the high-rate regime.

[12345678910111213141516171819202122232425262728]

References

  1. 1.

    van der Meulen EC: Three- terminal communication channels. Advances in Applied Probability 1971,3(1):120-154. 10.2307/1426331

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    van der Meulen EC: Transmission of information in a T-terminal discrete memoryless channel, M.S. thesis. Department of Statistics, University of California, Berkeley, Calif, USA; 1968.

    Google Scholar 

  3. 3.

    Cover TM, El Gamal AA: Capacity theorems for the relay channel. IEEE Transactions on Information Theory 1979,25(5):572-584. 10.1109/TIT.1979.1056084

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Laneman JN, Tse DNC, Wornell GW: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory 2004,50(12):3062-3080. 10.1109/TIT.2004.838089

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Gupta P, Kumar PR: Towards an information theory of large networks: an achievable rate region. IEEE Transactions on Information Theory 2003,49(8):1877-1894. 10.1109/TIT.2003.814480

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Kramer G, Gastpar M, Gupta P: Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory 2005,51(9):3037-3063. 10.1109/TIT.2005.853304

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Høst-Madsen A, Zhang J: Capacity bounds and power allocation for the wireless relay channel. IEEE Transactions on Information Theory 2005,51(6):2020-2040. 10.1109/TIT.2005.847703

    Article  MATH  Google Scholar 

  8. 8.

    Høst-Madsen A: Capacity bounds for cooperative diversity. IEEE Transactions on Information Theory 2006,52(4):1522-1544.

    Article  MathSciNet  MATH  Google Scholar 

  9. 9.

    Schein B, Gallager R: The Gaussian parallel relay network. Proceedings of IEEE International Symposium on Information Theory, June 2000, Sorrento, Italy 22.

    Google Scholar 

  10. 10.

    Karagiannidis GK, Tsiftsis TA, Mallik RK: Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications 2006,54(1):18-22.

    Article  Google Scholar 

  11. 11.

    Karagiannidis GK: Performance bounds of multihop wireless communications with blind relays over generalized fading channels. IEEE Transactions on Wireless Communications 2006,5(2):498-503. 10.1109/TWC.2006.1603962

    Article  Google Scholar 

  12. 12.

    Azarian K, El Gamal H, Schniter P: On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory 2005,51(12):4152-4172. 10.1109/TIT.2005.858920

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Bletsas A, Khisti A, Reed DP, Lippman A: A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications 2006,24(3):659-672. special issue on 4G

    Article  Google Scholar 

  14. 14.

    Perevalov E, Blum RS: Delay limited capacity of ad hoc networks: asymptotically optimal transmission and relaying strategy. IEEE Transactions on Communications 2004,52(11):1957-1968. 10.1109/TCOMM.2004.836587

    Article  Google Scholar 

  15. 15.

    Cheng S, Xiong Z: Successive refinement for the Wyner-Ziv problem and layered code design. Proceedings of Data Compression Conference (DCC '04), March 2004, Snowbird, Utah, USA 531.

    Google Scholar 

  16. 16.

    Xie L-L, Kumar PR: A network information theory for wireless communication: scaling laws and optimal operation. IEEE Transactions on Information Theory 2004,50(5):748-767. 10.1109/TIT.2004.826631

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Reznik A, Kulkarni SR, Verdú S: Degraded Gaussian multirelay channel: capacity and optimal power allocation. IEEE Transactions on Information Theory 2004,50(12):3037-3046. 10.1109/TIT.2004.838373

    Article  MathSciNet  MATH  Google Scholar 

  18. 18.

    Wieselthier JE, Nguyen GD, Ephremides A: On the construction of energy-efficient broadcast and multicast trees in wireless networks. Proceedings of 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '00), March 2000, Tel Aviv, Israel 2: 585-594.

    Google Scholar 

  19. 19.

    Srinivas A, Modiano E: Minimum energy disjoint path routing in wireless ad hoc networks. Proceedings of the Annual International Conference on Mobile Computing and Networking (MOBICOM '03), September 2003, San Diego, Calif, USA 122-133.

    Google Scholar 

  20. 20.

    Khandani A, Abounadi J, Modiano E, Zheng L: Cooperative routing in wireless networks. Proceedings of 41st Annual Allerton Conference on Communications, Control and Computing, October 2003, Monticello, Ill, USA 1270-1279.

    Google Scholar 

  21. 21.

    Maric I, Yates RD: Bandwidth and power allocation for cooperative strategies in Gaussian relay networks. Proceedings of Asilomar Conference on Signals, Systems and Computers, November 2004, Monterey, Calif, USA 2: 1907-1911.

    Google Scholar 

  22. 22.

    Maric I, Yates R: Forwarding strategies for parallel-relay networks. Proceedings of Information Sciences and Systems (CISS '04), March 2004, Princeton, NJ, USA

    Google Scholar 

  23. 23.

    Chen S, Beach MA, McGeehan JP: Division-free duplex for wireless applications. Electronics Letters 1998,34(2):147-148. 10.1049/el:19980022

    Article  Google Scholar 

  24. 24.

    Carleial AB: Multiple-access channels with different generalized feedback signals. IEEE Transactions on Information Theory 1982,28(6):841-850. 10.1109/TIT.1982.1056587

    Article  MATH  Google Scholar 

  25. 25.

    Valenti MC, Zhao B: Capacity approaching distributed turbo codes for the relay channel. Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, April 2003, Jeju, Korea

    Google Scholar 

  26. 26.

    Bertsekas D, Gallager R: Data Networks. Prentice-Hall, Englewood Cliffs, NJ, USA; 1987.

    Google Scholar 

  27. 27.

    Xue F, Xie L-L, Kumar PR: The transport capacity of wireless networks over fading channels. IEEE Transactions on Information Theory 2005,51(3):834-847. 10.1109/TIT.2004.842628

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Chakrabarti A, Sabharwal A, Aazhang B: Multi-hop communication is order-optimal for homogeneous sensor networks. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN '04), April 2004, Berkeley, Calif, USA 178-185.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anders Høst-Madsen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Z., Høst-Madsen, A. Routing and Power Allocation in Asynchronous Gaussian Multiple-Relay Channels. J Wireless Com Network 2006, 056914 (2006). https://doi.org/10.1155/WCN/2006/56914

Download citation

Keywords

  • Information System
  • Search Space
  • System Application
  • Heuristic Algorithm
  • Power Allocation