Shepherd NH: Radio wave loss deviation and shadow loss at 900 MHz. IEEE Transactions on Vehicular Technology 1977,26(4):309-313.
Article
Google Scholar
Coverage prediction for mobile radio systems operating in the 800/900 MHz frequency range IEEE Transactions on Vehicular Technology 1988,37(1):3-72.
Hashemi H: The indoor radio propagation channel. Proceedings of the IEEE 1993,81(7):943-968. 10.1109/5.231342
Article
Google Scholar
Tzeremes G, Christodoulou CG: Use of Weibull distribution for describing outdoor multipath fading. Proceedings of IEEE Antennas and Propagation Society International Symposium, June 2002, San Antonio, Tex, USA 1: 232-235.
Article
Google Scholar
Siqueira GL, Vásquez EJA: Local and global signal variability statistics in a mobile urban environment. Wireless Personal Communications 2000,15(1):61-78. 10.1023/A:1008920617967
Article
Google Scholar
Alouini M-S, Simon MK: Performance of generalized selection combining over Weibull fading channels. Proceedings of IEEE 54th Vehicular Technology Conference (VTC '01), October 2001, Atlantic City, NJ, USA 3: 1735-1739.
Google Scholar
Cheng J, Tellambura C, Beaulieu NC: Performance of digital linear modulations on Weibull slow-fading channels. IEEE Transactions on Communications 2004,52(8):1265-1268. 10.1109/TCOMM.2004.833015
Article
Google Scholar
Sagias NC, Karagiannidis GK, Tombras GS: Error-rate analysis of switched diversity receivers in Weibull fading. Electronics Letters 2004,40(11):681-682. 10.1049/el:20040479
Article
Google Scholar
Sagias NC, Karagiannidis GK, Zogas DA, Mathiopoulos PT, Kotsopoulos SA, Tombras GS: Performance of diversity receivers over non-identical Weibull fading channels. Proceedings of IEEE 59th Vehicular Technology Conference (VTC '04), May 2004, Milan, Italy 1: 480-484.
Google Scholar
Sagias NC, Zogas DA, Karagiannidis GK, Tombras GS: Performance analysis of switched diversity receivers in Weibull fading. Electronics Letters 2003,39(20):1472-1474. 10.1049/el:20030956
Article
Google Scholar
Sagias NC, Mathiopoulos PT, Tombras GS: Selection diversity receivers in Weibull fading: outage probability and average signal-to-noise ratio. Electronics Letters 2003,39(25):1859-1860. 10.1049/el:20031189
Article
Google Scholar
Sagias NC, Karagiannidis GK, Zogas DA, Mathiopoulos PT, Tombras GS: Performance analysis of dual selection diversity in correlated Weibull fading channels. IEEE Transactions on Communications 2004,52(7):1063-1067. 10.1109/TCOMM.2004.831362
Article
Google Scholar
Karagiannidis GK, Zogas DA, Sagias NC, Kotsopoulos SA, Tombras GS: Equal-gain and maximal-ratio combining over nonidentical Weibull fading channels. IEEE Transactions on Wireless Communications 2005,4(3):841-846.
Article
Google Scholar
Sagias NC, Zogas DA, Karagiannidis GK, Tombras GS: Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters 2004,8(6):377-379. 10.1109/LCOMM.2004.831319
Article
Google Scholar
Ismail MH, Matalgah MM: Outage probability in multiple access systems with Weibull-faded lognormal-shadowed communication links. Proceedings of IEEE 62nd Semiannual Vehicular Technology Conference (VTC '05), September 2005, Dallas, Tex, USA (available on CD)
Google Scholar
Ismail MH, Matalgah MM: Performance evaluation of maximal ratio combining diversity over the Weibull fading channel in presence of co-channel interference. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC' 06), April 2006, Las Vegas, Nev, USA
Google Scholar
Amindavar H, Ritcey JA: Padé approximations of probability density functions. IEEE Transactions on Aerospace and Electronic Systems 1994,30(2):416-424. 10.1109/7.272264
Article
Google Scholar
Suetin SP: Padé approximants and efficient analytic continuation of a power series. Russian Mathematical Surveys 2002,57(1):43-141. 10.1070/RM2002v057n01ABEH000475
Article
MathSciNet
MATH
Google Scholar
Karagiannidis GK:Moments-based approach to the performance analysis of equal gain diversity in Nakagami-
fading. IEEE Transactions on Communications 2004,52(5):685-690. 10.1109/TCOMM.2004.826255
Article
Google Scholar
Jay E, Ovarlez J-P, Duvaut P: New methods of radar performances analysis. Signal Processing 2000,80(12):2527-2540. 10.1016/S0165-1684(00)00136-5
Article
MATH
Google Scholar
Gradshteyn IS, Ryzhik IM: Table of Integrals, Series and Products. Academic Press, San Diego, Calif, USA; 2000.
MATH
Google Scholar
Simon MK, Alouini M-S: Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. John Wiley & Sons, New York, NY, USA; 2000.
Book
Google Scholar