Skip to main content

Spectral Efficiency of CDMA Downlink Cellular Networks with Matched Filter


In this contribution, the performance of a downlink code division multiple access (CDMA) system with orthogonal spreading and multicell interference is analyzed. A useful framework is provided in order to determine the optimal base station coverage for wireless frequency selective channels with dense networks where each user is equipped with a matched filter. Using asymptotic arguments, explicit expressions of the spectral efficiency are obtained and provide a simple expression of the network spectral efficiency based only on a few meaningful parameters. Contrarily to a common misconception which asserts that to increase spectral efficiency in a CDMA network, one has to increase the number of cells, we show that, depending on the path loss and the fading channel statistics, the code orthogonal gain (due to the synchronization of all the users at the base station) can compensate and even compete in some cases with the drawbacks due to intercell interference. The results are especially realistic and useful for the design of dense networks.



  1. 1.

    Zaidel BM, Shamai S, Verdu S: Multicell uplink spectral efficiency of coded DS-CDMA with random signatures. IEEE Journal on Selected Areas in Communications 2001,19(8):1556-1569. 10.1109/49.942517

    Article  Google Scholar 

  2. 2.

    Sendonaris A, Veeravalli V: The capacity-coverage tradeoff in CDMA systems with soft handoff. Proceedings of the 31st Asilomar Conference on Signals, Systems & Computers, November 1997, Pacific Grove, Calif, USA 1: 625-629.

    Google Scholar 

  3. 3.

    Kong N, Milstein LB: Error probability of multicell CDMA over frequency selective fading channels with power control error. IEEE Transactions on Communications 1999,47(4):608-617. 10.1109/26.764934

    Article  Google Scholar 

  4. 4.

    Tonguz OK, Wang MM: Cellular CDMA networks impaired by Rayleigh fading: system performance with power control. IEEE Transactions on Vehicular Technology 1994,43(3, part 1):515-527. 10.1109/25.312795

    Article  Google Scholar 

  5. 5.

    Gilhousen KS, Jacobs IM, Padovani R, Viterbi AJ, Weaver LA Jr., Wheatley CE III: On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology 1991,40(2):303-312. 10.1109/25.289411

    Article  Google Scholar 

  6. 6.

    Corazza GE, De Maio G, Vatalaro F: CDMA cellular systems performance with fading, shadowing, and imperfect power control . IEEE Transactions on Vehicular Technology 1998,47(2):450-459. 10.1109/25.669083

    Article  Google Scholar 

  7. 7.

    Kim DK, Adachi F: Theoretical analysis of reverse link capacity for an SIR-based power-controlled cellular CDMA system in a multipath fading environment. IEEE Transactions on Vehicular Technology 2001,50(2):452-464. 10.1109/25.923057

    Article  Google Scholar 

  8. 8.

    Zhang J, Aalo V: Performance analysis of a multicell DS-CDMA system with base station diversity. IEE Proceedings-Communications 2001,148(2):112-118. 10.1049/ip-com:20010267

    Article  Google Scholar 

  9. 9.

    Li Z, Latva-Aho M: Performance of a multicell MC-CDMA system with power control errors in Nakagami fading channels. IEICE Transactions on Communications 2003,E86-B(9):2795-2798.

    Google Scholar 

  10. 10.

    Hiai F, Petz D: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs. Volume 77. American Mathematical Society, Providence, RI, USA; 2000.

    Google Scholar 

  11. 11.

    Tse DNC, Hanly SV: Linear multiuser receivers: effective interference, effective bandwidth and user capacity. IEEE Transactions on Information Theory 1999,45(2):641-657. 10.1109/18.749008

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Shamai S, Verdu S: The impact of frequency-flat fading on the spectral efficiency of CDMA. IEEE Transactions on Information Theory 2001,47(4):1302-1327. 10.1109/18.923717

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Debbah M, Hachem W, Loubaton P, de Courville M: MMSE analysis of certain large isometric random precoded systems. IEEE Transactions on Information Theory 2003,49(5):1293-1311. 10.1109/TIT.2003.810641

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Debbah M, Müller RR: MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory 2005,51(5):1667-1690. 10.1109/TIT.2005.846388

    Article  MathSciNet  MATH  Google Scholar 

  15. 15.

    Gray RM: Toeplitz and Circulant Matrices. 1st edition. Stanford University, Palo Alto, Calif, USA; 1977.

    Google Scholar 

  16. 16.

    Franceschetti M, Bruck J, Schulman LJ: A random walk model of wave propagation. IEEE Transactions on Antennas and Propagation 2004,52(5):1304-1317. 10.1109/TAP.2004.827540

    Article  Google Scholar 

  17. 17.

    Verdu S, Shamai S: Spectral efficiency of CDMA with random spreading. IEEE Transactions on Information Theory 1999,45(2):622-640. 10.1109/18.749007

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Guo D, Verdu S, Rasmussen LK: Asymptotic normality of linear multiuser receiver outputs. IEEE Transactions on Information Theory 2002,48(12):3080-3095. 10.1109/TIT.2002.805066

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Bonneau N, Debbah M, Altman E, Caire G: Spectral efficiency of CDMA uplink cellular networks. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 5: 821-824.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mérouane Debbah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonneau, N., Debbah, M. & Altman, E. Spectral Efficiency of CDMA Downlink Cellular Networks with Matched Filter. J Wireless Com Network 2006, 074081 (2006).

Download citation


  • Fading Channel
  • Dense Network
  • Path Loss
  • Spectral Efficiency
  • Code Division Multiple Access