Skip to main content

Error Control Coding in Low-Power Wireless Sensor Networks: When Is ECC Energy-Efficient?

Abstract

This paper examines error control coding (ECC) use in wireless sensor networks (WSNs) to determine the energy efficiency of specific ECC implementations in WSNs. ECC provides coding gain, resulting in transmitter energy savings, at the cost of added decoder power consumption. This paper derives an expression for the critical distance, the distance at which the decoder's energy consumption per bit equals the transmit energy savings per bit due to coding gain, compared to an uncoded system. Results for several decoder implementations, both analog and digital, are presented for in different environments over a wide frequency range. In free space, is very large at lower frequencies, suitable only for widely spaced outdoor sensors. In crowded environments and office buildings, drops significantly, to 3 m or greater at 10 GHz. Interference is not considered; it would lower. Analog decoders are shown to be the most energy-efficient decoders in this study.

[1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859]

References

  1. 1.

    Roundy S, Otis B, Chee YH, Rabaey J, Wright P: A 1.9GHz RF transmit beacon using environmentally scavenged energy. Proceedings of IEEE International Symposium on Low Power Electronics and Devices (ISLPED '03), August 2003, Seoul, Korea

    Google Scholar 

  2. 2.

    Lin T-H, Kaiser WJ, Pottie GJ: Integrated low-power communication system design for wireless sensor networks. IEEE Communications Magazine 2004,42(12):142-150.

    Article  Google Scholar 

  3. 3.

    Otis B, Chee YH, Rabaey J:A 400-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC '05), February 2005, San Francisco, Calif, USA 1: 396-397.

    Google Scholar 

  4. 4.

    Iniewski K, Siu C, Kilambi S, et al.: Ultra-low-power circuit and system design tradeoffs for smart sensor network applications. Proceedings of the International Conference on Information and Communication Technology (ICICT '05), December 2005, Cairo, Egypt invited paper

    Google Scholar 

  5. 5.

    Ekanayake V, Kelly IV C, Manohar R: An ultra-low-power processor for sensor networks. Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XI '04), October 2004, Boston, Mass, USA

    Google Scholar 

  6. 6.

    Ottman GK, Hofmann HF, Lesieutre GA: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics 2003,18(2):696-703. 10.1109/TPEL.2003.809379

    Article  Google Scholar 

  7. 7.

    Roundy S, Steingart D, Fréchette L, Wright PK, Rabaey J: Power sources for wireless sensor networks. Proceedings of the 1st European Workshop on Wireless Sensor Networks (EWSN '04), January 2004, Berlin, Germany 1-17.

    Google Scholar 

  8. 8.

    Ye W, Heidemann J, Estrin D: An energy-efficient MAC protocol for wireless sensor networks. Proceedings of 21st International Conference of IEEE Computer and Communications Societies (INFOCOM '02), June 2002, New York, NY, USA 3: 1567-1576.

    Google Scholar 

  9. 9.

    Sohrabi K, Pottie GJ: Performance of a novel self-organization protocol for wireless ad-hoc sensor networks. Proceedings of IEEE 50th Vehicular Technology Conference (VTC '99), September 1999, Amsterdam, The Netherlands 2: 1222-1226.

    Google Scholar 

  10. 10.

    Woo A, Culler D: A transmission control scheme for media access in sensor networks. Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM '01), July 2001, Rome, Italy

    Google Scholar 

  11. 11.

    Bennett F, Clarke D, Evans JB, Hopper A, Jones A, Leask D: Piconet: embedded mobile networking. IEEE Personal Communications 1997,4(5):8-15. 10.1109/98.626977

    Article  Google Scholar 

  12. 12.

    Molnar A, Lu B, Lanzisera S, Cook BW, Pister KSJ: An ultra-low power 900 MHz RF transceiver for wireless sensor networks. Proceedings of the IEEE on Custom Integrated Circuits Conference (CICC '04), October 2004, Orlando, Fla, USA 401-404.

    Google Scholar 

  13. 13.

    Porret A-S, Melly T, Python D, Enz CC, Vittoz EA: An ultralow-power UHF transceiver integrated in a standard digital CMOS process: architecture and receiver. IEEE Journal of Solid-State Circuits 2001,36(3):452-466. 10.1109/4.910484

    Article  Google Scholar 

  14. 14.

    Melly T, Porret A-S, Enz CC, Vittoz EA: An ultralow-power UHF transceiver integrated in a standard digital CMOS process: transmitter. IEEE Journal of Solid-State Circuits 2001,36(3):467-472. 10.1109/4.910485

    Article  Google Scholar 

  15. 15.

    Lettieri P, Fragouli C, Srivastava MB: Low power error control for wireless links. Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM '97), September 1997, Budapest, Hungary 139-150.

    Google Scholar 

  16. 16.

    Mukhopadhyay S, Panigrahi D, Dey S: Data aware, low cost error correction for wireless sensor networks. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '04), March 2004, Atlanta, Ga, USA 4: 2492-2497.

    Google Scholar 

  17. 17.

    Shih E, Cho S, Lee FS, Calhoun BH, Chandrakasan A: Design considerations for energy-efficient radios in wireless microsensor networks. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 2004,37(1):77-94.

    Article  Google Scholar 

  18. 18.

    Berrou C, Glavieux A, Thitimajshima P: Near Shannon limit error-correcting coding and decoding: turbo-codes. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 2: 1064-1070.

    Article  Google Scholar 

  19. 19.

    Gallager RG: Low-density parity-check codes. IRE Transactions on Information Theory 1962,8(1):21-28. 10.1109/TIT.1962.1057683

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Kasnavi S, Kilambi S, Crowley B, Iniewski K, Kaminska B: Application of error control codes (ECC) in ultra-low-power RF transceivers. Proceedings of IEEE Dallas Circuits and Systems Workshop (DCAS '05), September 2005, Dallas, Tex, USA

    Google Scholar 

  21. 21.

    Sadeghi N, Howard SL, Kasnavi S, Iniewski K, Gaudet VC, Schlegel C: Analysis of error control code use in ultra-low-power wireless sensor networks. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '06), May 2006, Kos, Greece accepted

    Google Scholar 

  22. 22.

    Schlegel C, Perez L: Trellis and Turbo Coding. IEEE/Wiley, Piscataway, NJ, USA; 2004.

    Google Scholar 

  23. 23.

    Sklar B: Digital Communications: Fundamentals and Applications. Prentice Hall, Englewood Cliffs, NJ, USA; 1988.

    Google Scholar 

  24. 24.

    Stutzman WL, Thiele GA: Antenna Theory and Design. 2nd edition. John Wiley & Sons, New York, NY, USA; 1998.

    Google Scholar 

  25. 25.

    Rappaport TS: Wireless Communications: Principles and Practice. Prentice Hall, Englewood Cliffs, NJ, USA; 1996.

    Google Scholar 

  26. 26.

    Seidel SY, Rappaport TS: Path loss prediction in multifloored buildings at 914 MHz. IEE Electronics Letters 1991,27(15):1384-1387. 10.1049/el:19910870

    Article  Google Scholar 

  27. 27.

    Perez-Vega C, Garcia JL: A simple approach to a statistical path loss model for indoor communications. Proceedings of the 27th European Microwave Conference and Exhibition, September 1997, Jerusalem, Israel 617-623.

    Google Scholar 

  28. 28.

    Durgin GD, Rappaport TS, Xu H: Partition-based path loss analysis for in-home and residential areas at 5.85 GHz. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '98), November 1998, Sydney, NSW, Australia 2: 904-909.

    Google Scholar 

  29. 29.

    Green DB, Obaidat AS: An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices. Proceedings of IEEE International Conference on Communications (ICC '02), April-May 2002, New York, NY, USA 5: 3424-3428.

    Article  Google Scholar 

  30. 30.

    Hansen J, Leuthold PE: The mean received power in ad hoc networks and its dependence on geometrical quantities. IEEE Transactions on Antennas and Propagation 2003,51(9):2413-2419. 10.1109/TAP.2003.816376

    Article  Google Scholar 

  31. 31.

    Devasirvatham DMJ, Banerjee C, Krain MJ, Rappaport DA: Multi-frequency radiowave propagation measurements in the portable radio environment. Proccedings of IEEE International Conference on Communications (ICC '90), April 1990, Atlanta, Ga, USA 4: 1334-1340.

    Google Scholar 

  32. 32.

    Harrold TJ, Nix AR, Beach MA: Propagation studies for mobile-to-mobile communications. Proceedings of IEEE 54th Vehicular Technology Conference (VTC '01), October 2001, Atlantic City, NJ, USA 3: 1251-1255.

    Google Scholar 

  33. 33.

    Hashemi H: The indoor radio propagation channel. Proceedings of the IEEE 1993,81(7):941-968.

    Article  Google Scholar 

  34. 34.

    Sydor J: True broadband for the countryside. IEE Communications Engineer 2004,2(2):32-36. 10.1049/ce:20040206

    Article  Google Scholar 

  35. 35.

    Aguiar A, Gross J: Wireless channel models. In Tech. Rep. TKN-03-007. Telecommunications Networks Group, Technische Universität Berlin, Berlin, Germany; April 2003.

    Google Scholar 

  36. 36.

    Hamming RW: Error detecting and error correcting codes. The Bell System Technical Journal 1950,29(2):147-160.

    MathSciNet  Article  Google Scholar 

  37. 37.

    Reed IS, Solomon G: Polynomial codes over certain finite fields. SIAM Journal on Applied Mathematics 1960, 8: 300-304. 10.1137/0108018

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Bose RC, Ray-Chaudhuri DK: On a class of error correcting binary group codes. Information and Control 1960, 3: 68-79. 10.1016/S0019-9958(60)90287-4

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Hocquenghem A: Codes correcteurs d'erreurs. Chiffres 1959, 2: 147-156.

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Viterbi AJ: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 1967,13(2):260-269.

    Article  MATH  Google Scholar 

  41. 41.

    Bahl LR, Cocke J, Jelinek F, Raviv J: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory 1974,20(2):284-287.

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, Calif, USA; 1988.

    Google Scholar 

  43. 43.

    Wiberg N: Codes and decoding on general graphs, thesis of Doctor of Philosophy. Linköping University, Linköping, Sweden; 1996.

    Google Scholar 

  44. 44.

    Fossorier MPC, Mihaljević M, Imai H: Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications 1999,47(5):673-680. 10.1109/26.768759

    Article  Google Scholar 

  45. 45.

    Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.

    Google Scholar 

  46. 46.

    Vogrig D, Gerosa A, Neviani A, Graell I Amat A, Montorsi G, Benedetto S:A 0.35-m CMOS analog turbo decoder for the 40-bit rate 1/3 UMTS channel code. IEEE Journal of Solid-State Circuits 2005,40(3):753-761.

    Article  Google Scholar 

  47. 47.

    Winstead C: Analog Iterative Error Control Decoders, thesis of Doctor of Philosophy. Department of Electrical & Computer Engineering, University of Alberta, Alberta, Canada; 2004.

    Google Scholar 

  48. 48.

    Blanksby AJ, Howland CJ: A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-State Circuits 2002,37(3):404-412. 10.1109/4.987093

    Article  Google Scholar 

  49. 49.

    Rabaey J, Chandrakasan A, Nikolic B: Digital Integrated Circuits. 2nd edition. Prentice Hall, Englewood Cliffs, NJ, USA; 2003.

    Google Scholar 

  50. 50.

    Fill TS, Gulak PG: An assessment of VLSI and embedded software implementations for Reed-Solomon decoders. Proceedings of IEEE Workshop on Signal Processing Systems (SIPS '02), October 2002, San Diego, Calif, USA 99-102.

    Google Scholar 

  51. 51.

    Winstead C, Nguyen N, Gaudet VC, Schlegel C: Low-voltage CMOS circuits for analog iterative decoders. IEEE Transactions on Circuits and Systems I: Regular Papers 2005.,52(4):

  52. 52.

    Kawokgy M, Andre C, Salama T: Low-power asynchronous Viterbi decoder for wireless applications. Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED '04), August 2004, Newport, Calif, USA 286-289.

    Google Scholar 

  53. 53.

    Lin C-C, Wu C-C, Lee C-Y: A low power and high speed Viterbi decoder chip for WLAN applications. Proceedings of the 29th European Solid-State Circuits Conference (ESSCIRC '03), September 2003, Lissabon, Portugal 723-726.

    Google Scholar 

  54. 54.

    Winstead C, Schlegel C, Gaudet VC: CMOS analog decoder for (256,121) block turbo code. submitted to EURASIP Journal on Wireless Communications and Networking, special issue: CMOS RF circuits for wireless applications

  55. 55.

    Hemati S, Banihashemi AH, Plett C:An 80-Mb/s 0.18-m CMOS analog min-sum iterative decoder for a (32,8,10) LDPC code. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC '05), September 2005, San Jose, Calif, USA 243-246.

    Google Scholar 

  56. 56.

    Lee T: The Design of CMOS Radio-Frequency Integrated Circuits. 2nd edition. Cambridge University Press, Cambridge, UK; 2004.

    Google Scholar 

  57. 57.

    Wireless LAN medium access control (MAC) and physical layer (PHY) specification LAN MAN Standards Committee, IEEE Computer Society, IEEE, New York, NY, USA, IEEE Std 802.11 - 1997 edition, 1997

  58. 58.

    Aksin D, Gregori S, Maloberti F: High-efficiency power amplifier for wireless sensor networks. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), May 2005, Kobe, Japan 6: 5898-5901.

    Article  Google Scholar 

  59. 59.

    Chee YH, Rabaey J, Niknejad AM: A class A/B low power amplifier for wireless sensor networks. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '04), May 2004, Vancouver, BC, Canada 4: 409-412.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheryl L. Howard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Howard, S.L., Schlegel, C., Iniewski, K. et al. Error Control Coding in Low-Power Wireless Sensor Networks: When Is ECC Energy-Efficient?. J Wireless Com Network 2006, 074812 (2006). https://doi.org/10.1155/WCN/2006/74812

Download citation

Keywords

  • Power Consumption
  • Energy Efficiency
  • Wireless Sensor Network
  • Free Space
  • Energy Saving