Skip to main content

High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems


One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM) system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.



  1. 1.

    Win MZ, Scholtz RA: Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view. IEEE Journal on Selected Areas in Communications 2002,20(9):1613-1627. 10.1109/JSAC.2002.805031

    Article  Google Scholar 

  2. 2.

    Molisch AF, Foerster JR, Pendergrass M: Channel models for ultrawideband personal area networks. IEEE Wireless Communications 2003,10(6):14-21. 10.1109/MWC.2003.1265848

    Article  Google Scholar 

  3. 3.

    Turin W, Jana R, Ghassemzadeh SS, Rice CW, Tarokh T: Autoregressive modeling of an indoor UWB channel. Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies, May 2002, Baltimore, Md, USA 71-74.

    Google Scholar 

  4. 4.

    Cimini LJ Jr.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications 1985,33(7):665-675. 10.1109/TCOM.1985.1096357

    Article  Google Scholar 

  5. 5.

    Batra A, et al.: Multi-band OFDM physical layer proposal for IEEE P802.15 task group 3a. IEEE P802.15-03/268r2, November 2003

    Google Scholar 

  6. 6.

    Floch BL, Alard M, Berrou C: Coded orthogonal frequency division multiplex. Proceedings of the IEEE 1995,83(6):982-996. 10.1109/5.387096

    Article  Google Scholar 

  7. 7.

    Ungerboeck G: Channel coding with multilevel/phase signalling. IEEE Transactions on Information Theory 1982,28(1):55-67. 10.1109/TIT.1982.1056454

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    LeGoff S, Glavieux A, Berrou C: Turbo-codes and high spectral efficiency modulation. Proceedings of IEEE International Conference on Communications (ICC '94), May 1994, New Orleans, La, USA 2: 645-649.

    Google Scholar 

  9. 9.

    Robertson P, Wörz T: Bandwidth-efficient turbo trellis-coded modulation using punctured component codes. IEEE Journal on Selected Areas in Communications 1998,16(2):206-218. 10.1109/49.661109

    Article  Google Scholar 

  10. 10.

    Benedetto S, Divsalar D, Montorsi G, Pollara F: Parallel concatenated trellis coded modulation. Proceedings of IEEE International Conference on Communications (ICC '96), June 1996, Dallas, Tex, USA 2: 974-978.

    Google Scholar 

  11. 11.

    Forney GD Jr., Trott MD, Chung S-Y: Sphere-bound-achieving coset codes and multilevel coset codes. IEEE Transactions on Information Theory 2000,46(3):820-850. 10.1109/18.841165

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Wang Q, Wei L, Kennedy RA: Iterative Viterbi decoding, trellis shaping, and multilevel structure for high-rate parity-concatenated TCM. IEEE Transactions on Communications 2002,50(1):48-55. 10.1109/26.975743

    Article  Google Scholar 

  13. 13.

    Wang Q, Wei L: Graph-based iterative decoding algorithms for parity-concatenated trellis codes. IEEE Transactions on Information Theory 2001,47(3):1062-1074. 10.1109/18.915663

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Divsalar D, Jin H, McEliece RJ: Coding theorems for turbo-like codes. Proceedings of 36th Allerton Conference Communication, Control and Computing, September 1998, Monticello, Ill, USA 201-210.

    Google Scholar 

  15. 15.

    Batra A, Balakrishnan J, Aiello GR, Foerster JR, Dabak A: Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques 2004,52(9):2123-2138. 10.1109/TMTT.2004.834184

    Article  Google Scholar 

  16. 16.

    Win MZ, Scholtz RA: Impulse radio: how it works. IEEE Communications Letters 1998,2(2):36-38. 10.1109/4234.660796

    Article  Google Scholar 

  17. 17.

    Saleh A, Valenzuela R: A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 1987,5(2):128-137.

    Article  Google Scholar 

  18. 18.

    Muquet B, Wang Z, Giannakis GB, de Courville M, Duhamel P: Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications 2002,50(12):2136-2148. 10.1109/TCOMM.2002.806518

    Article  Google Scholar 

  19. 19.

    Scaglione A, Giannakis GB, Barbarossa S: Redundant filterbank precoders and equalizers —part I: unification and optimal designs and part II: blind channel estimation, synchronization, and direct equalization. IEEE Transactions on Signal Processing 1999,47(7):1988-2022. 10.1109/78.771047

    Article  Google Scholar 

  20. 20.

    Berrou C, Glavieux A, Thitimajshima P: Near shannon limit error-correcting coding and encoding: turbo-codes 1. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 2: 1064-1070.

    Article  Google Scholar 

  21. 21.

    Bahl LR, Cocke J, Jelinek F, Raviv J: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory 1974,20(2):284-287.

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Divsalar D, Pollara F: On the design of turbo codes. In JPL TDA Progress Report 42-123. Jet Propulsion Laboratory, Pasadena, Calif, USA; November 1995.

    Google Scholar 

  23. 23.

    ten Brink S: Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications 2001,49(10):1727-1737. 10.1109/26.957394

    Article  MATH  Google Scholar 

  24. 24.

    Divsalar D, Dolinar S, Pollara F: Serial turbo trellis coded modulation with rate-1 inner code. Proceedings of IEEE International Symposium on Information Theory (ISIT '00), June 2000, Sorrento, Italy 194.

    Google Scholar 

  25. 25.

    Divsalar D, Dolinar S, Pollara F: Iterative turbo decoder analysis based on density evolution. IEEE Journal on Selected Areas in Communications 2001,19(5):891-907. 10.1109/49.924873

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yanxia Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wang, Y., Yang, L. & Wei, L. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems. J Wireless Com Network 2006, 091329 (2006).

Download citation


  • Data Rate
  • Rate Transmission
  • Essential Requirement
  • Spectral Efficiency
  • High Data Rate