IF Akyildiz, W-Y Lee, MC Vuran, S Mohanty, NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput. Netw. 50(13), 2127–2159 (2006). https://doi.org/10.1016/j.comnet.2006.05.001.
Article
MATH
Google Scholar
C Baylis, M Fellows, L Cohen, RJM II, Solving the spectrum crisis: intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar. IEEE Microw. Mag. 15(5), 94–107 (2014). https://doi.org/10.1109/mmm.2014.2321253.
Article
Google Scholar
YC Liang, KC Chen, GY Li, P Mahonen, Cognitive radio networking and communications: an overview. IEEE Trans. Veh. Technol. 60(7), 3386–3407 (2011). https://doi.org/10.1109/TVT.2011.2158673.
Article
Google Scholar
IF Akyildiz, W-Y Lee, MC Vuran, S Mohanty, A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 46(4), 40–48 (2008). https://doi.org/10.1109/mcom.2008.4481339.
Article
Google Scholar
X Xing, T Jing, W Cheng, Y Huo, X Cheng, Spectrum prediction in cognitive radio networks. IEEE Wirel. Commun.20(2), 90–96 (2013). https://doi.org/10.1109/mwc.2013.6507399.
Article
Google Scholar
Y Saleem, MH Rehmani, Primary radio user activity models for cognitive radio networks: a survey. J. Netw. Comput. Appl. 43:, 1–16 (2014). https://doi.org/10.1016/j.jnca.2014.04.001.
Article
Google Scholar
Y Chen, H-S Oh, A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Commun. Surv. Tutorials. 18(1), 848–859 (2016). https://doi.org/10.1109/comst.2014.2364316.
Article
Google Scholar
A Al-Hourani, V Trajkovic, S Chandrasekharan, S Kandeepan, Spectrum occupancy measurements for different urban environments. 2015 Eur. Conf. Netw. Commun. (EuCNC) (2015). https://doi.org/10.1109/eucnc.2015.7194048.
SJ Kim, GB Giannakis, in 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Dynamic learning for cognitive radio sensing (IEEE, Piscataway, 2013), pp. 388–391. https://doi.org/10.1109/CAMSAP.2013.6714089.
Chapter
Google Scholar
Z Chen, N Guo, Z Hu, RC Qiu, Experimental validation of channel state prediction considering delays in practical cognitive radio. IEEE Trans. Veh. Technol. 60(4), 1314–1325 (2011). https://doi.org/10.1109/TVT.2011.2116051.
Article
Google Scholar
L Yin, S Yin, W Hong, S Li, in Military Communications Conference (MILCOM). Spectrum behaviour learning in cognitive radio based on artificial neural network (IEEE, Piscataway, 2011), pp. 25–30. https://doi.org/10.1109/MILCOM.2011.6127671.
Google Scholar
J Lee, HK Park, Channel prediction-based channel aladdress scheme for multichannel cognitive radio networks. J. Commun. Netw. 16(2), 209–216 (2014). https://doi.org/10.1109/jcn.2014.000032.
Article
Google Scholar
W Pu, IF Akyildiz, Asymptotic queuing analysis for dynamic spectrum access networks in the presence of heavy tails. IEEE J. Sel. Areas Commun.31(3), 514–522 (2013). https://doi.org/10.1109/JSAC.2013.130316.
Article
Google Scholar
X Li, SA Zekavat, Cognitive radio based spectrum sharing: evaluating channel availability via traffic pattern prediction. J. Commun. Netw. 11(2), 104–114 (2009). https://doi.org/10.1109/JCN.2009.6391385.
Article
Google Scholar
VK Tumuluru, P Wang, D Niyato, Channel status prediction for cognitive radio networks. Wirel. Commun. Mob. Comput. 12(10), 862–874 (2012). https://doi.org/10.1002/wcm.1017.
Article
Google Scholar
S Chen, L Tong, Maximum throughput region of multiuser cognitive access of continuous time Markovian channels. IEEE J. Sel. Areas Commun. 29(10), 1959–1969 (2011). https://doi.org/10.1109/JSAC.2011.111206.
Article
Google Scholar
M Bkassiny, Y Li, SK Jayaweera, A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutorials. 15(3), 1136–1159 (2013). https://doi.org/10.1109/surv.2012.100412.00017.
Article
Google Scholar
A He, KK Bae, TR Newman, J Gaeddert, K Kim, R Menon, L Morales-Tirado, JJ Neel, Y Zhao, JH Reed, WH Tranter, A survey of artificial intelligence for cognitive radios. IEEE Trans. Veh. Technol.59(4), 1578–1592 (2010). https://doi.org/10.1109/tvt.2010.2043968.
Article
Google Scholar
N Cesa-Bianchi, G Lugosi, Prediction, Learning, and Games (Cambridge University Press, New York, 2006). https://doi.org/10.1017/cbo9780511546921.
Book
MATH
Google Scholar
N Merhav, M Feder, Universal prediction. IEEE Trans. Inf. Theory. 44(6), 2124–2147 (1998). https://doi.org/10.1109/18.720534.
Article
MathSciNet
MATH
Google Scholar
H Bolfarine, S Zacks, Prediction theory for finite populations, Springer Series in Statistics (Springer, New York, 1992). https://doi.org/10.1007/978-1-4612-2904-9.
Book
MATH
Google Scholar
CE Shannon, Prediction and entropy of printed english. Bell Syst. Tech. J. 30(1), 50–64 (1951). https://doi.org/10.1002/j.1538-7305.1951.tb01366.x.
Article
MATH
Google Scholar
J Rissanen, Universal coding, information, prediction, and estimation. IEEE Trans. Inf. Theory.30(4), 629–636 (1984). https://doi.org/10.1109/tit.1984.1056936.
Article
MathSciNet
MATH
Google Scholar
H Kobayashi, BL Mark, W Turin, Probability, random processes, and statistical analysis: applications to communications, signal processing, queueing theory and mathematical finance (Cambridge University Press, New York, 2011).
Book
Google Scholar
J Ziv, A Lempel, A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory.23(3), 337–343 (1977). https://doi.org/10.1109/tit.1977.1055714.
Article
MathSciNet
MATH
Google Scholar
JL KELLY, A new interpretation of information rate. IRE Trans. Inf. Theory.2(3), 25–34 (2011).
Google Scholar
Kotł, W,owski, Gru, P̈,nwald, in IEEE Information Theory Workshop (ITW), 2012. Sequential normalized maximum likelihood in log-loss prediction (IEEE, Piscataway, 2012), pp. 547–551. https://doi.org/10.1109/ITW.2012.6404734.
Chapter
Google Scholar
M Hutter, Convergence and loss bounds for bayesian sequence prediction. IEEE Trans. Inf. Theory. 49(8), 2061–2067 (2003). https://doi.org/10.1109/tit.2003.814488.
Article
MathSciNet
MATH
Google Scholar
G Shafer, V Vovk, Probability and finance: it’s only a game! Wiley Series in Probability and Statistics (Wiley, New York, 2005). https://doi.org/10.1002/0471249696.
MATH
Google Scholar
PD Grnwald, IJ Myung, MA Pitt, Advances in minimum description length: theory and applications (Neural Information Processing) (The MIT Press, Cambridge, 2005).
Google Scholar
N Merhav, M Feder, A strong version of the redundancy-capacity theorem of universal coding. IEEE Trans. Inf. Theory. 41(3), 714–722 (1995). https://doi.org/10.1109/18.382017.
Article
MATH
Google Scholar
NN Cencov, Statistical decision rules and optimal inference (translations of mathematical monographs), vol. 53 (American Mathematical Society, Providence, 2000).
Google Scholar
PP Vaidyanathan, The theory of linear prediction. Synth. Lect. Signal Process.2(1), 1–184 (2007). https://doi.org/10.2200/s00086ed1v01y200712spr003.
Article
Google Scholar
PH Algoet, The strong law of large numbers for sequential decisions under uncertainty. IEEE Trans. Inf. Theory. 40(3), 609–633 (1994). https://doi.org/10.1109/18.335876.
Article
MathSciNet
MATH
Google Scholar
EA Wan, RVD Merwe, in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium. The unscented kalman filter for nonlinear estimation (IEEE, Piscataway, 2000), pp. 153–158. https://doi.org/10.1109/asspcc.2000.882463.
Google Scholar
B Ristic, S Arulampalam, NJ Gordon, Beyond the Kalman filter: particle filters for tracking applications (Artech house, London, 2004).
MATH
Google Scholar
JGD Gooijer, RJ Hyndman, 25 years of time series forecasting. Int. J. Forecast.22(3), 443–473 (2006). https://doi.org/10.1016/j.ijforecast.2006.01.001.
Article
Google Scholar
TM Cover, JA Thomas, Elements of information theory (Wiley, New York, 2006).
MATH
Google Scholar
A Goldsmith, P Varaiya, Capacity, mutual information, and coding for finite-state Markov channels. IEEE Trans. Inf. Theory. 42(3), 868–886 (1996). https://doi.org/10.1109/isit.1994.394696.
Article
MATH
Google Scholar
RM Neal, Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000). https://doi.org/10.1080/10618600.2000.10474879.
MathSciNet
Google Scholar
M Dudí, SJ Phillips, RE Schapire, in Learning Theory. Performance guarantees for regularized maximum entropy density estimation (Springer, Berlin, Heidelberg, 2004), pp. 472–486.
Chapter
Google Scholar
YW Teh, Dirichlet Process. (C Sammut, GI Webb, eds.) (Springer, Boston, 2010). https://doi.org/10.1007/978-0-387-30164-8.
Google Scholar
M Wellens, P Mähönen, Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model. Mob. Netw. Appl. 15(3), 461–474 (2010). https://doi.org/10.1007/s11036-009-0199-9.
Article
Google Scholar
MH Islam, CL Koh, SW Oh, X Qing, YY Lai, C Wang, Y-C Liang, BE Toh, F Chin, GL Tan, W Toh, in 2008 3
rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom 2008). Spectrum survey in singapore: occupancy measurements and analyses (IEEE, Piscataway, 2008), pp. 1–7. https://doi.org/10.1109/crowncom.2008.4562457.
W Tang, J Zhou, H Yu, S Li, A fair scheduling scheme based on collision statistics for cognitive radio networks. Concurr. Comput. Pract. Experience.25(9), 1091–1100 (2012). https://doi.org/10.1002/cpe.2879.
Article
Google Scholar
C Xianfu, Z Honggang, AB Mackenzie, M Matinmikko, Predicting spectrum occupancies using a non-stationary hidden Markov model. IEEE Wirel. Commun. Lett.3(4), 333–336 (2014). https://doi.org/10.1109/LWC.2014.2315040.
Article
Google Scholar
C Xu, H Jianwei, Evolutionarily stable spectrum access. IEEE Trans. Mob. Comput. 12(7), 1281–1293 (2013). https://doi.org/10.1109/TMC.2012.94.
Article
Google Scholar
P De, Y-C Liang, Blind spectrum sensing algorithms for cognitive radio networks. IEEE Trans. Veh. Technol. 57(5), 2834–2842 (2008). https://doi.org/10.1109/tvt.2008.915520.
Article
Google Scholar
P Huang, C-J Liu, L Xiao, J Chen, Wireless spectrum occupancy prediction based on partial periodic pattern mining. 2012 IEEE 20th Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst.25(7), 1925–1934 (2012). https://doi.org/10.1109/mascots.2012.16.
Google Scholar
S Arunthavanathan, S Kandeepan, RJ Evans, in 2013 IEEE Globecom Workshops (GC). Reinforcement learning based secondary user transmissions in cognitive radio networks (IEEE, Piscataway, 2013), pp. 374–379. https://doi.org/10.1109/glocomw.2013.6825016.
Chapter
Google Scholar
J Yang, H Zhao, X Chen, in IEEE 2nd International Conference on Computer and Communications (ICCC). Genetic algorithm optimized training for neural network spectrum prediction (IEEE, Piscataway, 2016), pp. 2949–2954. https://doi.org/10.1109/compcomm.2016.7925237.
Google Scholar
S Ni, X Bai, Z Wang, B Guo, in IEEE International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). A new method of cognitive radio spectrum prediction research (IEEE, Piscataway, 2016), pp. 982–986. https://doi.org/10.1109/cisp-bmei.2016.7852855.
Google Scholar
A Agarwal, S Dubey, MA Khan, R Gangopadhyay, S Debnath, in 2016 International Conference on Signal Processing and Communications (SPCOM). Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access (IEEE, Piscataway, 2016), pp. 1–5. https://doi.org/10.1109/SPCOM.2016.7746632.
Google Scholar
C Clancy, J Hecker, E Stuntebeck, T O’Shea, Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14(4), 47–52 (2007). https://doi.org/10.1109/MWC.2007.4300983.
Article
Google Scholar
L Gavrilovska, V Atanasovski, I Macaluso, LA DaSilva, Learning and reasoning in cognitive radio networks. IEEE Commun. Surv. Tutorials. 15(4), 1761–1777 (2013). https://doi.org/10.1109/surv.2013.030713.00113.
Article
Google Scholar
DC Karia, BK Lande, RD Daruwala, Performance analysis of HMM- and ANN-based spectrum vacancy predictor behaviour for cognitive radios. Int. J. Ad Hoc Ubiquit. Comput.11(4), 206–213 (2012). https://doi.org/10.1504/ijahuc.2012.050439.
Article
Google Scholar
S-S Gu, S-N Yu, A chaotic neural network-based algorithm for relational structure matching. IEEE 2004 Int. Conf. Mach. Learn. Cybern. 6:, 3328–3333 (2004). https://doi.org/10.1109/icmlc.2004.1380353.
Article
Google Scholar
MH Rehmani, AC Viana, H Khalife, S Fdida, SURF: A distributed channel selection strategy for data dissemination in multi-hop cognitive radio networks. Comput. Commun.36(10), 1172–1185 (2013). https://doi.org/10.1016/j.comcom.2013.03.005.
Article
Google Scholar
S Bayhan, F Alagöz, Distributed channel selection in CRAHNs: A non-selfish scheme for mitigating spectrum fragmentation. Ad Hoc Netw.10(5), 774–788 (2012). https://doi.org/10.1016/j.adhoc.2011.04.010. Special Issue on Cognitive Radio Ad Hoc Networks.
Article
Google Scholar
DP Bertsekas, JN Tsitsiklis, Introduction to probability, Athena Scientific books (Athena Scientific, Belmont, 2002). https://doi.org/10.1017/cbo9780511996504.005.
Google Scholar
A Banaei, CN Georghiades, in 2009 IEEE International Conference on Communications. Throughput analysis of a randomized sensing scheme in cell-based ad-hoc cognitive networks (IEEE, Piscataway, 2009), pp. 1–6. https://doi.org/10.1109/icc.2009.5199524.
Google Scholar
J Gambini, O Simeone, U Spagnolini, Y Bar-Ness, Y Kim, in 2008 IEEE International Conference on Communications. Cognitive radio with secondary packet-by-packet vertical handover (IEEE, Piscataway, 2008), pp. 1050–1054. https://doi.org/10.1109/icc.2008.205.
Chapter
Google Scholar
M Derakhshani, T Le-Ngoc, Learning-based opportunistic spectrum access with adaptive hopping transmission strategy. IEEE Trans. Wirel. Commun. 11(11), 3957–3967 (2012). https://doi.org/10.1109/twc.2012.091812.111873.
Article
Google Scholar
P Thakur, A Kumar, S Pandit, G Singh, SN Satashia, in IEEE Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC). Performance improvement of cognitive radio network using spectrum prediction and monitoring techniques for spectrum mobility (IEEE, Piscataway, 2016), pp. 679–684. https://doi.org/10.1109/pdgc.2016.7913208.
Google Scholar
M Khabazian, S Aissa, N Tadayon, Performance modeling of a two-tier primary-secondary network operated with IEEE 802.11 DCF mechanism. IEEE Trans. Wirel. Commun. 11(9), 3047–3057 (2012). http://doi.org/10.1109/twc.2012.071612.110010.
Article
Google Scholar
Z Wang, S Salous, Spectrum occupancy statistics and time series models for cognitive radio. J. Signal Process. Syst. 62(2), 145–155 (2011). https://doi.org/10.1007/s11265-009-0352-5.
Article
Google Scholar
J Zhang, G Ding, Y Xu, F Song, in IEEE 8th International Conference on Wireless Communications & Signal Processing (WCSP). On the usefulness of spectrum prediction for dynamic spectrum access (IEEE, Piscataway, 2016), pp. 1–4. https://doi.org/10.1109/wcsp.2016.7752555.
Google Scholar
S Joshi, P Pawelczak, D Cabric, J Villasenor, When channel bonding is beneficial for opportunistic spectrum access networks. IEEE Trans. Wirel. Commun. 11(11), 3942–3956 (2012). http://doi.org/10.1109/twc.2012.092512.111730.
Article
Google Scholar
W Wang, T Lv, T Wang, X Yu, in 2010 IEEE 72nd Vehicular Technology Conference - Fall. Primary user activity based channel allocation in cognitive radio network (IEEE, Ottawa, 2010), pp. 1–5. https://doi.org/10.1109/vetecf.2010.5594260, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5594260&isnumber=5594061.
Google Scholar
J Yang, H Zhao, Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Commun. Lett. 19(10), 1738–1741 (2015). https://doi.org/10.1109/lcomm.2015.2442571.
Article
Google Scholar
RD Smallwood, EJ Sondik, The optimal control of partially observable Markov processes over a finite horizon. Oper. Res.21(5), 1071–1088 (1973). https://doi.org/10.1287/opre.21.5.1071.
Article
MATH
Google Scholar
D Blackwell, in Transactions of the First Prague Conference on Information Theory, Statistical Decision Functions, Random Processes Held at Liblice Near Prague from November. The entropy of functions of finite-state Markov chains, vol. 28 (Czechoslovak Academy of sciences, Czech Republic, 1957), pp. 13–20.
Google Scholar
T Kaijser, A limit theorem for partially observed Markov chains. Ann. Probab.3(4), 677–696 (1975). https://doi.org/10.1214/aop/1176996308.
Article
MathSciNet
MATH
Google Scholar
J Marroquin, S Mitter, T Poggio, Probabilistic solution of ill-posed problems in computational vision. J. Am. Stat. Assoc. 82(397), 76–89 (1987). https://doi.org/10.2307/2289127.
Article
MATH
Google Scholar
LR Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE. 77(2), 257–286 (1989). https://doi.org/10.1109/5.18626, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=18626&isnumber=698.
Article
Google Scholar
MS Arulampalam, S Maskell, N Gordon, T Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proc.50(2), 174–188 (2002). https://doi.org/10.1109/78.978374.
Article
Google Scholar
D Haussler, A Barron, SCCRL University of California, How well do Bayes methods work for on-line prediction of [[+ or - ]1] values?, Technical reports (University of California, Santa Cruz, Computer Research Laboratory, California, 1992).
Google Scholar
D Barber, Bayesian time series models (Cambridge University Press, New York, 2011).
Book
MATH
Google Scholar
L Csurgai-Horváth, J Bito, in Proceedings of the 2011 11
th International Conference on Telecommunications (ConTEL). Primary and secondary user activity models for cognitive wireless network (IEEE, Piscataway, pp. 301–306.
S Bayhan, F Alagöz, A Markovian approach for best-fit channel selection in cognitive radio networks. Ad Hoc Netw. 12:, 165–177 (2014). https://doi.org/10.1016/j.adhoc.2011.08.007.
Article
Google Scholar
AW Min, KG Shin, Exploiting multi-channel diversity in spectrum-agile networks. IEEE Conf. Comput. Commun (2008). https://doi.org/10.1109/infocom.2007.256.
Q Zhao, L Tong, A Swami, Y Chen, Decentralized cognitive mac for opportunistic spectrum access in ad-hoc networks: A pomdp framework. IEEE J. Sel. Areas Commun. 25(3), 589–600 (2007). https://doi.org/10.1109/jsac.2007.070409.
Article
Google Scholar
H Eltom, S Kandeepan, B Moran, RJ Evans, in 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS). Spectrum occupancy prediction using a hidden Markov modelIEEEPiscataway, 2015), pp. 1–8. https://doi.org/10.1109/icspcs.2015.7391772.
Google Scholar
Y Li, Y-N Dong, H Zhang, H-T Zhao, H-X Shi, X-X Zhao, in IEEE 10th International Conference on Computer and Information Technology (CIT). Spectrum usage prediction based on high-order Markov model for cognitive radio networks (IEEE, Piscataway, 2010), pp. 2784–2788. https://doi.org/10.1109/cit.2010.464.
Google Scholar
J Riihijärvi, J Nasreddine, P Mähönen, in European Wireless Conference (EW). Impact of primary user activity patterns on spatial spectrum reuse opportunities (IEEE, Piscataway, 2010), pp. 962–968. https://doi.org/10.1109/ew.2010.5483445.
Chapter
Google Scholar
M Wellens, J Riihijarvi, P Mahonen, in IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops. Modelling primary system activity in dynamic spectrum access networks by aggregated on/off-processes (IEEE, Piscataway, 2009), pp. 1–6. https://doi.org/10.1109/SAHCNW.2009.5172946.
Google Scholar
S Wang, J Zhang, L Tong, A characterization of delay performance of cognitive medium access. IEEE Trans. Wirel. Commun.11(2), 800–809 (2012). https://doi.org/10.1109/twc.2012.010312.110765.
Article
Google Scholar
L Jiao, E Song, V Pla, FY Li, Capacity upper bound of channel assembling in cognitive radio networks with quasistationary primary user activities. IEEE Trans. Veh. Technol.62(4), 1849–1855 (2013). https://doi.org/10.1109/tvt.2012.2236115.
Article
Google Scholar
SD Barnes, BT Maharaj, Prediction based channel allocation performance for cognitive radio. AEU - Int. J. Electron. Commun.68(4), 336–345 (2014). https://doi.org/10.1016/j.aeue.2013.09.009.
Article
Google Scholar
L Meliá Gutiérrez, S Zazo, JL Blanco-Murillo, I Pérez-Álvarez, A García-Rodríguez, B Pérez-Díaz, HF spectrum activity prediction model based on HMM for cognitive radio applications. Phys. Commun.9:, 199–211 (2013). https://doi.org/10.1016/j.phycom.2012.09.004.
Article
Google Scholar
T Nguyen, BL Mark, Y Ephraim, Spectrum sensing using a hidden bivariate Markov model. IEEE Trans. Wirel. Commun. 12(9), 4582–4591 (2013). https://doi.org/10.1109/twc.2013.072513.121864.
Article
Google Scholar
A Saad, B Staehle, R Knorr, in IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Spectrum prediction using hidden Markov models for industrial cognitive radio (IEEE, Piscataway, 2016), pp. 1–7. https://doi.org/10.1109/wimob.2016.7763231.
Google Scholar
H Eltom, S Kandeepan, YC Liang, B Moran, RJ Evans, in 2016 IEEE International Conference on Communications Workshops (ICC). HMM based cooperative spectrum occupancy prediction using hard fusion (IEEE, Piscataway, 2016), pp. 669–675. https://doi.org/10.1109/iccw.2016.7503864.
Chapter
Google Scholar
C-H Liu, D Cabric, Prediction of Erlang-2 distributed primary user traffic for dynamic spectrum access. IEEE Wirel. Commun. Lett.4(5), 481–484 (2015). https://doi.org/10.1109/lwc.2015.2442249.
Article
Google Scholar
SH Sohn, HMM-based adaptive frequency-hopping cognitive radio system to reduce interference time and to improve throughput. KSII Trans. Internet Inf. Syst. 4(4), 475–490 (2010). https://doi.org/10.3837/tiis.2010.08.002.
Google Scholar
Y Zhao, Z Hong, G Wang, J Huang, in IEEE 25th International Conference on Computer Communication and Networks (ICCCN). High-order hidden bivariate Markov model: A novel approach on spectrum prediction (IEEE, Piscataway, 2016), pp. 1–7. https://doi.org/10.1109/icccn.2016.7568528.
Google Scholar
SS Dias, MGS Bruno, Cooperative target tracking using decentralized particle filtering and RSS sensors. IEEE Trans. Signal Proc. 61(14), 3632–3646 (2013). https://doi.org/10.1109/tsp.2013.2262276.
Article
MathSciNet
Google Scholar
X Xing, T Jing, W Cheng, Y Huo, X Cheng, T Znati, Cooperative spectrum prediction in multi-PU multi-SU cognitive radio networks. Mob. Netw. Appl.19(4), 502–511 (2014). https://doi.org/10.1007/s11036-014-0507-x.
Article
Google Scholar
D Dash, A Sabharwal, Paranoid secondary: waterfilling in a cognitive interference channel with partial knowledge. IEEE Trans. Wirel. Commun.11(3), 1045–1055 (2012). https://doi.org/10.1109/TWC.2012.012412.110348.
Article
Google Scholar
B Canberk, IF Akyildiz, S Oktug, Primary user activity modeling using first-difference filter clustering and correlation in cognitive radio networks. IEEE/ACM Trans. Netw.19(1), 170–183 (2011). https://doi.org/10.1109/tnet.2010.2065031.
Article
Google Scholar
Z Wen, T Luo, W Xiang, S Majhi, Y Ma, in ICC Workshops - 2008 IEEE International Conference on Communications Workshops. Autoregressive spectrum hole prediction model for cognitive radio systems (IEEE, Beijing, 2008), pp. 154–157. https://doi.org/10.1109/ICCW.2008.34, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4531882&isnumber=4531848.
Chapter
Google Scholar
D Willkomm, S Machiraju, J Bolot, A Wolisz, Primary user behavior in cellular networks and implications for dynamic spectrum access. IEEE Commun. Mag.47(3), 88–95 (2009). https://doi.org/10.1109/mcom.2009.4804392.
Article
Google Scholar
A Eltholth, in 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS). Forward Backward autoregressive spectrum prediction scheme in cognitive radio systems (IEEE, Piscataway, 2015), pp. 1–5. https://doi.org/10.1109/ICSPCS.2015.7391770.
Google Scholar
K Sithamparanathan, A Giorgetti, Cognitive radio techniques: spectrum sensing, interference mitigation, and localizatio. Artech House mobile communications library (Artech House, Boston, 2012).
Google Scholar
W Saad, Z Han, HV Poor, T Basar, JB Song, A cooperative bayesian nonparametric framework for primary user activity monitoring in cognitive radio networks. IEEE J. Sel. Areas Commun.30(9), 1815–1822 (2012). https://doi.org/10.1109/JSAC.2012.121027.
Article
Google Scholar
M Lopez-Benitez, F Casadevall, Time-dimension models of spectrum usage for the analysis, design, and simulation of cognitive radio networks. IEEE Trans. Veh. Technol.62(5), 2091–2104 (2013). https://doi.org/10.1109/tvt.2013.2238960.
Article
Google Scholar
VA Epanechnikov, Non-parametric estimation of a multivariate probability density. Theory Probab. Appl.14(1), 153–158 (1969). https://doi.org/10.1137/1114019.
Article
MathSciNet
MATH
Google Scholar
I Macaluso, D Finn, B Ozgul, LA DaSilva, Complexity of spectrum activity and benefits of reinforcement learning for dynamic channel selection. IEEE J. Sel. Areas Commun.31(11), 2237–2248 (2013). https://doi.org/10.1109/JSAC.2013.131115.
Article
Google Scholar
J Rissanen, Strong optimality of the normalized ML models as universal codes and information in data. IEEE Trans. Inf. Theory.47(5), 1712–1717 (2001). https://doi.org/10.1109/18.93091.
Article
MathSciNet
MATH
Google Scholar
F Hou, X Chen, H Huang, X Jing, in 2016 16
th International Symposium on Communications and Information Technologies (ISCIT). Throughput performance improvement in cognitive radio networks based on spectrum prediction, (2016), pp. 655–658. https://doi.org/10.1109/iscit.2016.7751715.
H Li, RC Qiu, in IEEE Global Telecommunications Conference (GLOBECOM). A graphical framework for spectrum modeling and decision making in cognitive radio networks (IEEE, Piscataway, 2010), pp. 1–6. https://doi.org/10.1109/GLOCOM.2010.5683361.
Google Scholar
IA Akbar, WH Tranter, in Proceedings of 2007 IEEE SoutheastCon. Dynamic spectrum aladdress in cognitive radio using hidden Markov models: Poisson distributed case (IEEE, Piscataway, 2007), pp. 196–201. https://doi.org/10.1109/SECON.2007.342884.
Chapter
Google Scholar