M. Steinbauer, A. F. Molisch, E. Bonek, The double-directional radio channel. IEEE Antennas Propag. Mag.43(4), 51–63 (2001).
Article
Google Scholar
C. R. Anderson, T. S. Rappaport, In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wirel. Commun.3(3), 922–928 (2004).
Article
Google Scholar
N. Moraitis, P. Constantinou, Measurements and characterization of wideband indoor radio channel at 60 GHz. IEEE Trans. Wirel. Commun.5(4), 880–889 (2006).
Article
Google Scholar
S. Geng, J. Kivinen, X. Zhao, P. Vainikainen, Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Trans. Veh. Technol.58(1), 3–13 (2009).
Article
Google Scholar
K. Wangchuk, K. Umeki, T. Iwata, P. Hanpinitsak, M. Kim, K. Saito, J. -i. Takada, Double directional millimeter wave propagation channel measurement and polarimetric cluster properties in outdoor urban pico-cell environment. IEICE Trans. Commun.100(7), 1133–1144 (2017).
Article
Google Scholar
M. Peter, W. Keusgen, R. J. Weiler, in Proc. of 9th European Conference on Antennas and Propagation (EuCAP). On path loss measurement and modeling for millimeter-wave 5G (IEEELisbon, 2015), pp. 1–5.
Google Scholar
M. Peter, R. J. Weiler, B. Göktepe, W. Keusgen, K. Sakaguchi, Channel measurement and modeling for 5G urban microcellular scenarios. Sensors. 16(8), 1330 (2016).
Article
Google Scholar
M. K. Samimi, T. S. Rappaport, G. R. MacCartney, Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wirel. Commun. Lett.4(4), 357–360 (2015).
Article
Google Scholar
S. Deng, M. K. Samimi, T. S. Rappaport, in Proc. of IEEE International Conference on Communication Workshop (ICCW). 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models (IEEELondon, 2015), pp. 1244–1250.
Google Scholar
G. R. MacCartney, T. S. Rappaport, M. K. Samimi, S. Sun, Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling. IEEE Access. 3:, 1573–1580 (2015).
Article
Google Scholar
W. Roh, J. -Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag.52(2), 106–113 (2014).
Article
Google Scholar
S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, A. Ghosh, Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun.61(10), 4391–4403 (2013).
Article
Google Scholar
S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, S. Rangan, MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?IEEE Commun. Mag.52(12), 110–121 (2014).
Article
Google Scholar
Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag.49(6), 101–107 (2011).
Article
Google Scholar
R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, A. M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Sign. Process.10(3), 436–453 (2016).
Article
Google Scholar
J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta, R. W. Heath, Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun.65(1), 403–430 (2017).
Google Scholar
A. Alkhateeb, O. El Ayach, G. Leus, R. W. Heath, Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Top. Sign. Process.8(5), 831–846 (2014).
Article
Google Scholar
M. N. Kulkarni, A. Ghosh, J. G. Andrews, A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans. Commun.64(5), 1952–1967 (2016).
Article
Google Scholar
E. Zöchmann, S. Schwarz, M. Rupp, in Proc. of IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). Comparing antenna selection and hybrid precoding for millimeter wave wireless communications (IEEERio de Janerio, 2016), pp. 1–5.
Google Scholar
S. Pratschner, S. Caban, S. Schwarz, M. Rupp, in Proc. of 25th European Signal Processing Conference (EUSIPCO). A mutual coupling model for massive MIMO applied to the 3GPP 3D channel model (IEEEKos, 2017), pp. 623–627.
Google Scholar
J. Brady, N. Behdad, A. M. Sayeed, Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Trans. Antennas Propag.61(7), 3814–3827 (2013).
Article
Google Scholar
Y. Zeng, R. Zhang, Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm. IEEE Trans. Commun.64(4), 1557–1571 (2016).
Article
Google Scholar
Y. Zeng, R. Zhang, Cost-effective millimeter-wave communications with lens antenna array. IEEE Wirel. Commun.24(4), 81–87 (2017).
Article
Google Scholar
G. D. Durgin, Space-time Wireless Channels (Prentice Hall Professional, Upper Saddle River, 2003).
Google Scholar
D. Dupleich, N. Iqbal, C. Schneider, S. Haefner, R. Müller, S. Skoblikov, J. Luo, R. Thomä, in Proc. of 11th European Conference on Antennas and Propagation (EUCAP). Investigations on fading scaling with bandwidth and directivity at 60 GHz (IEEEParis, 2017), pp. 3375–3379.
Google Scholar
N. Iqbal, C. Schneider, J. Luo, D. Dupleich, R. Müller, S. Haefner, R. S. Thomä, in Proc. of 11th European Conference on Antennas and Propagation (EUCAP). On the stochastic and deterministic behavior of mmWave channels (IEEEParis, 2017), pp. 1813–1817.
Google Scholar
M. K. Samimi, G. R. MacCartney, S. Sun, T. S. Rappaport, in Proc. of Vehicular Technology Conference (VTC Spring). 28 GHz millimeter-wave ultrawideband small-scale fading models in wireless channels (IEEENanjing, 2016), pp. 1–6.
Google Scholar
S. Sun, H. Yan, G. R. MacCartney, T. S. Rappaport, in Proc. of IEEE International Conference on Communications (ICC). Millimeter wave small-scale spatial statistics in an urban microcell scenario (IEEEParis, 2017), pp. 1–7.
Google Scholar
T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, S. Deng, Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Trans. Antennas Propag.65(12), 6474–6490 (2017).
Article
Google Scholar
T. Mavridis, L. Petrillo, J. Sarrazin, A. Benlarbi-Delai, P. De Doncker, Near-body shadowing analysis at 60 GHz. IEEE Trans. Antennas Propag.63(10), 4505–4511 (2015).
Article
MathSciNet
MATH
Google Scholar
G. D. Durgin, T. S. Rappaport, D. A. De Wolf, New analytical models and probability density functions for fading in wireless communications. IEEE Trans. Commun.50(6), 1005–1015 (2002).
Article
Google Scholar
R. Esposito, L. Wilson, Statistical properties of two sine waves in Gaussian noise. IEEE Trans. Inf. Theory. 19(2), 176–183 (1973).
Article
MathSciNet
MATH
Google Scholar
S. H. Oh, K. H. Li, BER performance of BPSK receivers over two-wave with diffuse power fading channels. IEEE Trans. Wirel. Commun.4(4), 1448–1454 (2005).
Article
Google Scholar
S. A. Saberali, N. C. Beaulieu, New expressions for TWDP fading statistics. IEEE Wirel. Commun. Lett.2(6), 643–646 (2013).
Article
Google Scholar
M. Rao, F. J. Lopez-Martinez, M. -S. Alouini, A. Goldsmith, MGF approach to the analysis of generalized two-ray fading models. IEEE Trans. Wirel. Commun.14(5), 2548–2561 (2015).
Google Scholar
S. Schwarz, Outage investigation of beamforming over random-phase finite-scatterer MISO channels. IEEE Signal Proc. Lett.24(7), 1029–1033 (2017).
Article
Google Scholar
S. Schwarz, in Proc. of IEEE Vehicular Technology Conference (VTC-Fall). Outage-based multi-user admission control for random-phase finite-scatterer MISO channels (Montreal, 2017), pp. 1–5.
J. Frolik, A case for considering hyper-Rayleigh fading channels. IEEE Trans. Wirel. Commun.6(4), 1235–1239 (2007).
Article
Google Scholar
J. Frolik, On appropriate models for characterizing hyper-Rayleigh fading. IEEE Trans. Wirel. Commun.7(12), 5202–5207 (2008).
Article
Google Scholar
J. Frolik, T. M. Weller, S. DiStasi, J. Cooper, A compact reverberation chamber for hyper-Rayleigh channel emulation. IEEE Trans. Antennas Propag.57(12), 3962–3968 (2009).
Article
Google Scholar
D. W. Matolak, J. Frolik, Worse-than-Rayleigh fading: Experimental results and theoretical models. IEEE Commun. Mag.49(4), 140–146 (2011).
Article
Google Scholar
L. Bakir, J. Frolik, Diversity gains in two-ray fading channels. IEEE Trans. Wirel. Commun.8(2), 968–977 (2009).
Article
Google Scholar
E. Zöchmann, K. Guan, M. Rupp, in Proc. of Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Two-ray models in mmWave communications, (2017), pp. 1–5.
J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, A. J. Goldsmith, The fluctuating two-ray fading model: Statistical characterization and performance analysis. IEEE Trans. Wirel. Commun.16(7), 4420–4432 (2017).
Article
Google Scholar
J. Zhang, W. Zeng, X. Li, Q. Sun, K. P. Peppas, New results on the fluctuating two-ray model with arbitrary fading parameters and its applications. IEEE Trans. Veh. Technol.67(3), 2766–2770 (2018).
Article
Google Scholar
W. Zeng, J. Zhang, S. Chen, K. P. Peppas, B Ai, Physical layer security over fluctuating two-ray fading channels. IEEE Trans. Veh. Technol.67(9), 8949–8953 (2018).
Article
Google Scholar
E. Zöchmann, M. Lerch, S. Caban, R. Langwieser, C. Mecklenbräuker, M. Rupp, in Proc. of IEEE Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Directional evaluation of receive power, Rician K-factor and RMS delay spread obtained from power measurements of 60 GHz indoor channels, (2016), pp. 1–4.
E. Zöchmann, M. Lerch, S. Pratschner, R. Nissel, S. Caban, M. Rupp, in Proc. of IEEE Vehicular Technology Conference (VTC-Fall). Associating spatial information to directional millimeter wave channel measurements, (2017), pp. 1–5.
K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference: a Practical Information-theoretic Approach (Springer, New York, 2003).
MATH
Google Scholar
R. W. Frick, The appropriate use of null hypothesis testing. Psychol. Methods. 1(4), 379 (1996).
Article
Google Scholar
C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, Hoboken, 2005).
Google Scholar
J. O. Berger, W. H. Jefferys, The application of robust Bayesian analysis to hypothesis testing and Occam’s razor. J. Ital. Stat. Soc.1(1), 17–32 (1992).
Article
MATH
Google Scholar
A. Maydeu-Olivares, C. Garcia-Forero, Goodness-of-fit testing. Int. Encycl. Educ.7(1), 190–196 (2010).
Article
Google Scholar
U. G. Schuster, H. Bolcskei, Ultrawideband channel modeling on the basis of information-theoretic criteria. IEEE Trans. Wirel. Commun.6(7), 2464–2475 (2007).
Article
Google Scholar
H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974).
Article
MathSciNet
MATH
Google Scholar
T. M. Ludden, S. L. Beal, L. B. Sheiner, Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J. Pharmacokinet. Biopharm.22(5), 431–445 (1994).
Article
Google Scholar
K. P. Burnham, D. R. Anderson, Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res.33(2), 261–304 (2004).
Article
MathSciNet
Google Scholar
R. He, A. F. Molisch, F. Tufvesson, Z. Zhong, B. Ai, T. Zhang, Vehicle-to-vehicle propagation models with large vehicle obstructions. IEEE Trans. Intell. Transp. Syst.15(5), 2237–2248 (2014).
Article
Google Scholar
T. Santos, F. Tufvesson, A. F. Molisch, Modeling the ultra-wideband outdoor channel: Model specification and validation. IEEE Trans. Wirel. Commun.9(6), 1987–1997 (2010).
Article
Google Scholar
R. He, Z. Zhong, B. Ai, G. Wang, J. Ding, A. F. Molisch, Measurements and analysis of propagation channels in high-speed railway viaducts. IEEE Trans. Wirel. Commun.12(2), 794–805 (2013).
Article
Google Scholar
K. Guan, Z. Zhong, B. Ai, T. Kürner, Propagation measurements and modeling of crossing bridges on high-speed railway at 930 MHz. IEEE Trans. Veh. Technol.63(2), 502–517 (2014).
Article
Google Scholar
R. He, Z. Zhong, B. Ai, J. Ding, Y. Yang, A. F. Molisch, Short-term fading behavior in high-speed railway cutting scenario: Measurements, analysis, and statistical models. IEEE Trans. Antennas Propag.61(4), 2209–2222 (2013).
Article
Google Scholar
D. Kim, H. Lee, J. Kang, Comments on “Near-body shadowing analysis at 60 GHz”. IEEE Trans. Antennas Propag.65(6), 3314–3314 (2017).
Article
Google Scholar
J. Lopez-Fernandez, L. Moreno-Pozas, F. J. Lopez-Martinez, E. Martos-Naya, Joint parameter estimation for the two-wave with diffuse power fading model. Sensors. 16(7), 1014 (2016).
Article
Google Scholar
J. Lopez-Fernandez, L. Moreno-Pozas, E. Martos-Naya, F. J. López-Martínez, in Proc. of the 84th IEEE Vehicular Technology Conference (VTC-Fall). Moment-based parameter estimation for the two-wave with diffuse power fading model (IEEEMontreal, 2016), pp. 1–5.
Google Scholar
A. S. Goldberger, Econometric Theory (Wiley, New York, 1964).
MATH
Google Scholar
J. H. McDonald, Handbook of Biological Statistics vol. 2 (Sparky House Publishing Baltimore, MD, Baltimore, 2009).
Google Scholar
B. Woolf, The log likelihood ratio test (the g-test): Methods and tables for tests of heterogeneity in contingency tables. Ann. Hum. Genet.21(4), 397–409 (1957).
Article
MATH
Google Scholar
Q. H. Spencer, B. D. Jeffs, M. A. Jensen, A. L. Swindlehurst, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE J. Sel. Areas Commun.18(3), 347–360 (2000).
Article
Google Scholar
G. D. Durgin, V. Kukshya, T. S. Rappaport, Wideband measurements of angle and delay dispersion for outdoor and indoor peer-to-peer radio channels at 1920 MHz. IEEE Trans. Antennas Propag.51(5), 936–944 (2003).
Article
Google Scholar
F. Fuschini, S. Häfner, M. Zoli, R. Müller, E. M. Vitucci, D. Dupleich, M. Barbiroli, J. Luo, E. Schulz, V. Degli-Esposti, R. S. Thomä, Analysis of in-room mm-Wave propagation: Directional channel measurements and ray tracing simulations. J. Infrared Millimeter Terahertz Waves. 38(6), 727–744 (2017).
Article
Google Scholar
J. Vehmas, J. Jarvelainen, S. L. H. Nguyen, R. Naderpour, K. Haneda, in Proc. of IEEE Vehicular Technology Conference (VTC-Fall). Millimeter-wave channel characterization at Helsinki airport in the 15, 28, and 60 GHz bands, (2016).
A. F. Molisch, Wireless Communications vol. 34 (Wiley, Chichester, 2012).
Google Scholar
Pasternack 60 GHz Transmitter and 60 GHz Receiver Modules. https://www.pasternack.com/60-ghz-modules-category.aspx.
P. Zetterberg, R. Fardi, Open source SDR frontend and measurements for 60-GHz wireless experimentation. IEEE Access. 3:, 445–456 (2015).
Article
Google Scholar
S. Sangodoyin, J. Salmi, S. Niranjayan, A. F. Molisch, in Proc. of Antennas and Propagation Conference (EUCAP). Real-time ultrawideband MIMO channel sounding (IEEEPrague, 2012).
M. Kim, H. K. Pham, Y. Chang, J. -i. Takada, in Proc. of Global Symposium on Millimeter Wave (GSMM). Development of low-cost 60-GHz millimeter-wave channel sounding system, (2013).
E. Zöchmann, C. Mecklenbräuker, M. Lerch, S. Pratschner, M. Hofer, D. Löschenbrand, J. Blumenstein, S. Sangodoyin, G. Artner, S. Caban, T. Zemen, A. Prokes, M. Rupp, A. F. Molisch, in Proc. of the 12th European Conference on Antennas and Propagation (EuCAP). Measured delay and Doppler profiles of overtaking vehicles at 60 GHz (IEEELondon, 2018), pp. 1–5.
Google Scholar
M. Lerch, E. Zöchmann, S. Caban, M. Rupp, in Proc. of European Wireless. Noise bounds in multicarrier mmWave Doppler measurements, (2017).
R. Nissel, E. Zöchmann, M. Lerch, S. Caban, M. Rupp, in Proc. of IEEE International Microwave Symposium (IMS). Low latency MISO FBMC-OQAM: It works for millimeter waves! (2017).
M. Lerch, S. Caban, M. Mayer, M. Rupp, The Vienna MIMO testbed: Evaluation of future mobile communications techniques. Intel Technol. J.18(3), 58–69 (2014).
Google Scholar
S. Caban, A. Disslbacher-Fink, J. A. García-Naya, M. Rupp, in Proc. of IEEE Instrumentation and Measurement Technology Conference (I2MTC). Synchronization of wireless radio testbed measurements (IEEEBinjiang, 2011), pp. 1–4.
Google Scholar
M. Laner, S. Caban, P. Svoboda, M. Rupp, in Proc. of IEEE Symposium on Precision Clock Synchronization for Measurement Control and Communication (ISPCS). Time synchronization performance of desktop computers (IEEEMunich, 2011), pp. 75–80.
Google Scholar
R. Haining, Spatial Data Analysis in the Social and Environmental Sciences (Cambridge University Press, Cambridge, 1993).
Google Scholar
A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann.109(1), 604–615 (1934).
Article
MathSciNet
MATH
Google Scholar
T. A. Ell, S. J. Sangwine, in Proc. of International Conference on Image Processing, 2. Hypercomplex Wiener-Khintchine theorem with application to color image correlation (IEEEVancouver, 2000), pp. 792–795.
Google Scholar
C. E. Moxey, S. J. Sangwine, T. A. Ell, Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process.51(7), 1941–1953 (2003).
Article
MathSciNet
MATH
Google Scholar
J. L. Hintze, R. D. Nelson, Violin plots: a box plot-density trace synergism. Am. Stat.52(2), 181–184 (1998).
Google Scholar
J. Hoey, The two-way likelihood ratio (G) test and comparison to two-way Chi squared test. arXiv preprint arXiv:1206.4881 (2012).