Accenture: Ninth Annual Cost of Cybercrime Study. https://www.accenture.com/us-en/insights/security/cost-cybercrime-study. Online; Accessed 2019.
IDC: Worldwide Internet of Things Spending Guide. https://www.idc.com/getdoc.jsp?containerId=IDCP29475. Online; Accessed 2019.
L. Chen, et al., Robustness, Security and Privacy in Location-Based Services for Future IoT: A Survey. IEEE Access. 5: (2017). https://doi.org/10.1109/ACCESS.2017.2695525.
I. Andrea, C. Chrysostomou, G. Hadjichristofi, Internet of Things: security vulnerabilities and challenges. IEEE Symp. Comput. Commun., 180–187 (2015). https://doi.org/10.1109/ISCC.2015.7405513.
M. Liyanage, et al., A Comprehensive Guide to 5G Security (Wiley, 2018). isbn:9781119293071.
M. La Polla, F. Martinelli, D. Sgandurra, A survey on security for mobile devices. IEEE Commun. Surv. Tutor.15(1), 446–471 (2013). https://doi.org/10.1109/SURV.2012.013012.00028.
Article
Google Scholar
(2019). https://www.theverge.com/2019/4/4/18293817/cybersecurity-hospitals-health-care-scan-simulation. Accessed 2019.
V. Alcácer, V. Cruz-Machado, Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. Int. J.22(3), 899–919 (2019). https://doi.org/10.1016/j.jestch.2019.01.006.
Google Scholar
K. Huang, C. Zhou, Y. Qin, W. Tu, A Game-Theoretic Approach to Cross-Layer Security Decision-Making in Industrial Cyber-Physical Systems. IEEE Trans. Ind. Electron.PP(XX), 1–1 (2019). https://doi.org/10.1109/TIE.2019.2907451.
Google Scholar
A. Al-Dulaimi, et al., 5G Networks: fundamental requirements, enabling technologies and operations management (Wiley, 2018). isbn:978-1-119-33273-2.
D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, V. Stettler, in Proc. 2018 ACM SIGSAC Conf. Comput. Commun. Secur. - CCS ’18. A Formal Analysis of 5G Authentication, (2018), pp. 1383–1396. https://doi.org/10.1145/3243734.3243846. arXiv:1806.10360v3.
European Telecommunications Standards Institute ETSI, Mobile Edge Computing Introductory Technical White Paper. https://portal.etsi.org/TBSiteMap/MEC/MECWhitePapers.aspx. Online 2018; Accessed 2019.
D. Wang, B. Bai, K. Lei, W. Zhao, Y. Yang, Z. Han, Enhancing Information Security via Physical Layer Approaches in Heterogeneous IoT With Multiple Access Mobile Edge Computing in Smart City. IEEE Access. 7:, 54508–54521 (2019). https://doi.org/10.1109/ACCESS.2019.2913438.
Article
Google Scholar
Symantec, Internet Security Threat Report (ISTR), (2019). https://www.symantec.com/security-center/threat-report. Accessed 2019.
Cisco, 2018 Annual Cybersecurity Report, (2018). https://www.cisco.com/c/m/enau/products/security/offers/annual-cybersecurity-report-2018.html. Accessed 2019.
WIRED, Security News This Week: ’Simjacker’ Attack Can Track Phones Just by Sending a Text, (2019). https://www.wired.com/story/simjacker-attack-north-korea-security-news/. Online; Accessed 2019.
Cisco, Cybersecurity Series 2019, Email Security, (2019). https://www.cisco.com/c/dam/en/us/products/collateral/security/email-security/email-threat-report.pdf. Online 2019; Accessed 2019.
R. K. M. J. Chakraborty, Hand Book on Hardware Cryptography - Algorithms and Analysis (LAP LAMBERT Academic Publishing, 2018). isbn:978-6139841653.
I. Setiadi, A. I. Kistijantoro, A. Miyaji, Elliptic curve cryptography: algorithms and implementation analysis over coordinate systems. 2015 2nd Int. Conf. Adv. Inform. Concepts, Theory Appl.16:, 1–6 (2015). https://doi.org/10.1109/ICAICTA.2015.7335349.
Google Scholar
K. Piotrowski, P. Langendoerfer, S. Peter, in Proceedings of the fourth ACM workshop on Security of ad hoc and sensor networks - SASN ’06. How public key cryptography influences wireless sensor node lifetime, (2007), p. 169. https://doi.org/10.1145/1180345.1180366.
T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel, A Survey of Lightweight-Cryptography Implementations. IEEE Des. Test Comput.24(6), 522–533 (2007). https://doi.org/10.1109/MDT.2007.178.
Article
Google Scholar
K. L. Matti Latva-aho, Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence, 6G Flaship (Technical Report September, University of Oulu, Finland, 2019).
Google Scholar
R. Roman, C. Alcaraz, J. Lopez, A survey of cryptographic primitives and implementations for hardware-constrained sensor network nodes. Mob. Netw. Appl.12(4), 231–244 (2007). https://doi.org/10.1007/s11036-007-0024-2.
S. B. Sadkhan, A. O. Salman, A survey on lightweight-cryptography status and future challenges, (2018). https://doi.org/10.1109/ICASEA.2018.8370965.
A. Biryukov, L. P. Perrin, State of the Art in Lightweight Symmetric Cryptography, University of Luxemburg (University of Luxemburg, 2017).
L. Chen, et al., NIST: Report on Post-Quantum Cryptography NIST. https://csrc.nist.gov/publications/detail/nistir/8105/final. Online 2016; Accessed 2019.
Quantamagazine, Does nevens law describe quantum computings rise, (2019). https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618. Accessed 2019.
IEEE Spectrum, What Google’s Quantum Supremacy Claim Means for Quantum Computing, (2019). https://spectrum.ieee.org/tech-talk/computing/hardware/how-googles-quantum-supremacy-plays-into-quantum-computings-long-game. Accessed 2019.
ECRYPT CSA, D5.4: Algorithms, Key Size and Protocols Report, (2018). https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf. Accessed 2019.
K. Zeng, K. Govindan, P. Mohapatra, Non-cryptographic authentication and identification in wireless networks [Security and Privacy in Emerging Wireless Networks. IEEE Wirel. Commun.17(5), 56–62 (2010). https://doi.org/10.1109/mwc.2010.5601959.
Article
Google Scholar
J. Zhang, T. Q. Duong, A. Marshall, R. Woods, Key Generation From Wireless Channels: A Review. IEEE Access. 4:, 614–626 (2016). https://doi.org/10.1109/ACCESS.2016.2521718.
Article
Google Scholar
Li G., C. Sun, J. Zhang, E. Jorswieck, B. Xiao, A. Hu, Physical layer key generation in 5G and beyond wireless communications: challenges and opportunities. Entropy. 21(5) (2019). https://doi.org/10.3390/e21050497.
C. H. Chang, Y. Zheng, L. Zhang, A Retrospective and a Look Forward: Fifteen Years of Physical Unclonable Function Advancement. IEEE Circ. Syst. Mag.17(3), 32–62 (2017). https://doi.org/10.1109/MCAS.2017.2713305.
Article
Google Scholar
J. Delvaux, D. Gu, D. Schellekens, I. Verbauwhede, Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?IEEE Trans. Inf. Forensic. Secur., 451–475 (2014). https://doi.org/10.1007/978-3-662-44709-3.
B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Proc. 9th ACM Conf. Comput. Commun. Secur. - CCS ’02. Silicon physical random functions, (2002), p. 148. https://doi.org/10.1145/586110.586132.
R. Maes, Physically Unclonable Functions: Constructions, Properties and Applications, PhD Thesis, Technische Universität Darmstadt. https://doi.org/10.1007/978-3-642-41395-7_2.
C. E. Shannon, Communication Theory of Secrecy Systems. Bell Syst. Tech. J.28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.
Article
MathSciNet
MATH
Google Scholar
A. D. Wyner, The Wire-Tap Channel. Bell Syst. Tech. J.54(8), 1355–1387 (1975). https://doi.org/10.1002/j.1538-7305.1975.tb02040.x.
Article
MathSciNet
MATH
Google Scholar
R. Ahlswede, I. Csiszar, Common randomness in information theory and cryptography—Part I: Secret sharing. IEEE Trans. Inf. Theory. 39(4), 1121–1132 (1993).
Article
MATH
Google Scholar
S. Mathur, R. Miller, A. Varshavsky, W. Trappe, N. Mandayam, in Proc. 9th Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’11. ProxiMate, (2011), p. 211. https://doi.org/10.1145/1999995.2000016.
F. Marino, E. Paolini, M. Chiani, in Proc. - IEEE Int. Conf.Secret key extraction from a UWB channel: analysis in a real environment (Ultra-Wideband, 2014), pp. 80–85. https://doi.org/10.1109/ICUWB.2014.6958955.
H. Liu, Y. Wang, J. Yang, Y. Chen, in Proc. IEEE INFOCOM. Fast and practical secret key extraction by exploiting channel response, (2013), pp. 3048–3056. https://doi.org/10.1109/INFCOM.2013.6567117.
S. N. Premnath, P. L. Gowda, S. K. Kasera, N. Patwari, R. Ricci, Secret key extraction using Bluetooth wireless signal strength measurements. Elev. Annu. IEEE Int. Conf. Sensing, Commun. Netw., 293–301 (2014). https://doi.org/10.1109/SAHCN.2014.6990365.
J. Wan, A. B. Lopez, M. A. Al Faruque, in ACM/IEEE 7th Int. Conf. Cyber-Physical Syst. ICCPS 2016 - Proc.Exploiting Wireless Channel Randomness to Generate Keys for Automotive Cyber-Physical System Security, (2016), pp. 1–10. https://doi.org/10.1109/ICCPS.2016.7479103.
A. M. Tonello, A. Pittolo, Physical layer security in power line communication networks: an emerging scenario, other than wireless. IET Commun.8(8), 1239–1247 (2014). https://doi.org/10.1049/iet-com.2013.0472.
Article
Google Scholar
A. A. E. Hajomer, X. Yang, A. Sultan, W. Sun, W. Hu, Key Generation and Distribution Using Phase Fluctuation in Classical Fiber Channel. Int. Conf. Transparent Opt. Netw.2018-July:, 1–3 (2018). https://doi.org/10.1109/ICTON.2018.8473760.
Google Scholar
A. Vazquez-Castro, M. Hayashi, Physical Layer Security for RF Satellite Channels in the Finite-Length Regime. IEEE Trans. Inf. Forensics Secur.14(4), 981–993 (2019). https://doi.org/10.1109/TIFS.2018.2868538.
Article
Google Scholar
B. M. ElHalawany, A. A. A. El-Banna, K. Wu, Physical-Layer Security and Privacy for Vehicle-to-Everything. IEEE Commun. Mag.57(10), 84–90 (2019). https://doi.org/10.1109/MCOM.001.1900141.
Article
Google Scholar
D. Tian, W. Zhang, J. Sun, C. -X. Wang, Physical-Layer Security of Visible Light Communications with Jamming, 512–517 (2019). https://doi.org/10.1109/ICCChina.2019.8855859.
Y. Luo, L. Pu, Z. Peng, Z. Shi, RSS-based secret key generation in underwater acoustic networks: advantages, challenges, and performance improvements. IEEE Commun. Mag.54(2), 32–38 (2016). https://doi.org/10.1109/MCOM.2016.7402258.
Article
Google Scholar
B. Halak, M. Zwolinski, M. S. Mispan, in 2016 IEEE 59th Int. Midwest Symp. Circuits Syst. (October). Overview of PUF-based hardware security solutions for the internet of things, (2016), pp. 1–4. https://doi.org/10.1109/MWSCAS.2016.7870046.
D. N. Ahmad-Reza Sadeghi, Hardware Intrinsic Security from Physically Unclonable Functions. Inf. Secur. Cryptogr.9783642143120:, 39–53 (2010). https://doi.org/10.1007/978-3-642-14452-32.
Google Scholar
Q. Xu, R. Zheng, W. Saad, Z. Han, Device fingerprinting in wireless networks: challenges and opportunities. IEEE Commun. Surv. Tutorials (2016). https://doi.org/10.1109/COMST.2015.2476338.
PHYLAWS Project, PHYsical LAyer Wireless Security, (2019). www.phylaws-ict.org/. Accessed 2019.
PROPHYLAXE Project 2013-2015, PROPHYLAXE, (2019). www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/prophylaxe. Accessed 2019.
G. Baldini, G. Steri, A Survey of Techniques for the Identification of Mobile Phones Using the Physical Fingerprints of the Built-In Components. IEEE Commun. Surv. Tutor.19(3), 1761–1789 (2017). https://doi.org/10.1109/COMST.2017.2694487. Accessed 2020-02-11.
Article
Google Scholar
Q. Xu, Y. Zhou, J. Mao, Configurable secure ECC hardware module for resource constrained device. 1st Asia Pacific Conf. Postgrad. Res. Microelectron. Electron. PrimeAsia. 09706201102:, 424–427 (2009). https://doi.org/10.1109/PRIMEASIA.2009.5397353.
Google Scholar
H. Ju, Y. Jeon, J. Kim, in Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell. CSCI. A study on the hardware-based security solutions for smart devices, (2016), pp. 833–834. https://doi.org/10.1109/CSCI.2015.105.
S. Vongsingthong, S. Boonkrong, A survey on smartphone authentication. Walailak J. Sci. Technol.12(1), 1–19 (2015). https://doi.org/10.2004/wjst.v12i1.864.
Google Scholar
B. Chatterjee, D. Das, S. Sen, RF-PUF: IoT security enhancement through authentication of wireless nodes using in-situ machine learning, (2018). https://doi.org/10.1109/HST.2018.8383916.
C. Zenger, Physical-layer security for the Internet of Things, PhD Thesis (University of Bochum, 2017).
M. Bloch, J. Barros, Physical-Layer Security: From Information Theory to Security Engineering (Cambridge Press, 2011). isbn:978-0521516501.
A. Badawy, T. Elfouly, T. Khattab, A. Mohamed, M. Guizani, Unleashing the secure potential of the wireless physical layer: secret key generation methods. Phys. Commun.19:, 1–10 (2016). https://doi.org/10.1016/j.phycom.2015.11.005.
Article
Google Scholar
D. Wang, B. Bai, W. Zhao, Z. Han, A Survey of Optimization Approaches for Wireless Physical Layer Security. IEEE Commun. Surv. Tutor.21(2), 1878–1911 (2019). https://doi.org/10.1109/COMST.2018.2883144.
Article
Google Scholar
J. M. Hamamreh, H. M. Furqan, H. Arslan, Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surv. Tutor.21(2), 1773–1828 (2019). https://doi.org/10.1109/COMST.2018.2878035.
Article
Google Scholar
H. V. Poor, R. F. Schaefer, Wireless physical layer security. Proc. Natl. Acad. Sci.114(1), 19–26 (2017). https://doi.org/10.1073/pnas.1618130114.
Article
Google Scholar
A. Mukherjee, S. A. A. Fakoorian, J. Huang, A. L. Swindlehurst, Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey. IEEE Commun. Surv. Tutor.16(3), 1550–1573 (2014). https://doi.org/10.1109/SURV.2014.012314.00178.
Article
Google Scholar
Y. Liu, H. -H. Chen, L. Wang, Physical Layer Security for Next Generation Wireless Networks: Theories, Technologies, and Challenges. IEEE Commun. Surv. Tutor.19(1), 347–376 (2017). https://doi.org/10.1109/COMST.2016.2598968.
Article
Google Scholar
R. Negi, S. Goel, Secret communication using artificial noise, vol. 3, (2005). https://doi.org/10.1109/VETECF.2005.1558439.
S. Goel, R. Negi, Guaranteeing Secrecy using Artificial Noise. IEEE Trans. Wirel. Commun.7(6), 2180–2189 (2008). https://doi.org/10.1109/TWC.2008.060848.
Article
Google Scholar
S. Goekceli, O. Cepheli, S. T. Basaran, G. K. Kurt, G. Dartmann, G. Ascheid, in 2017 IEEE Globecom Work. (GC Wkshps). How Effective is the Artificial Noise? Real-Time Analysis of a PHY Security Scenario, (2017), pp. 1–7. https://doi.org/10.1109/GLOCOMW.2017.8269228.
Y. Z. Xiangyun Zhou, Lingyang Song, Physical Layer Security in Wireless Communications (CRC Press, 2005). isbn:9781466567009.
U. Maurer, Secret key agreement by public discussion. IEEE Trans. Inf. Theory. 39(3), 733–742 (1993).
Article
MATH
Google Scholar
X. He, H. Dai, W. Shen, P. Ning, in 2013 Proc. IEEE INFOCOM. Is link signature dependable for wireless security? (2013), pp. 200–204. https://doi.org/10.1109/INFCOM.2013.6566763.
J. Zhang, R. Woods, T. Q. Duong, A. Marshall, Y. Ding, Y. Huang, Q. Xu, Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access. 4:, 4464–4477 (2016). https://doi.org/10.1109/ACCESS.2016.2604618.
Article
Google Scholar
S. N. Premnath, P. L. Gowda, S. K. Kasera, N. Patwari, R. Ricci, Secret key extraction using Bluetooth wireless signal strength measurements. Elev. Annu. IEEE Int. Conf. Sensing, Commun. Netw., 293–301 (2014). https://doi.org/10.1109/SAHCN.2014.6990365.
G. Revadigar, C. Javali, H. J. Asghar, K. B. Rasmussen, S. Jha, Mobility Independent Secret Key Generation for Wearable Health-care Devices. Proc. 10th EAI Int. Conf. Body Area Netw. (2015). https://doi.org/10.4108/eai.28-9-2015.2261446.
S. Eberz, M. Strohmeier, M. Wilhelm, I. Martinovic, A Practical Man-In-The-Middle Attack on Signal-Based Key Generation Protocols. Lect. Notes Comput. Sci. including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.7459 LNCS:, 235–252 (2012). https://doi.org/10.1007/978-3-642-33167-114.
Google Scholar
S. Mathur, W. Trappe, N. Mandayam, C. Ye, A. Reznik, in Proc. 14th ACM Int. Conf. Mob. Comput. Netw. - MobiCom ’08. Radio-telepathy, (2008), p. 128. https://doi.org/10.1145/1409944.1409960.
M. I. AlHajri, N. T. Ali, R. M. Shubair, Classification of Indoor Environments for IoT Applications: A Machine Learning Approach. IEEE Antennas Wirel. Propag. Lett.17(12), 2164–2168 (2018). https://doi.org/10.1109/LAWP.2018.2869548.
Article
Google Scholar
A. P. Fournaris, K. Lampropoulos, O. Koufopavlou, in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Hardware Security for Critical Infrastructures - The CIPSEC Project Approach (IEEEBochum, Germany, 2017), pp. 356–361. https://doi.org/10.1109/ISVLSI.2017.69.
Chapter
Google Scholar
H. Ju, Y. Jeon, J. Kim, in 2015 International Conference on Computational Science and Computational Intelligence (CSCI). A Study on the Hardware-Based Security Solutions for Smart Devices (IEEE, 2015), pp. 833–834. https://doi.org/10.1109/CSCI.2015.105.
L. Karter, L. Ferhati, I. Tafa, D. Saatciu, J. Fejzaj, in 2015 Science and Information Conference (SAI). Security evaluation of embedded hardware implementation (IEEELondon, United Kingdom, 2015), pp. 1272–1276. https://doi.org/10.1109/SAI.2015.7237307.
Chapter
Google Scholar
, in Presented as Part of the 6th USENIX Workshop on Offensive Technologies. Baseband attacks: remote exploitation of memory corruptions in cellular protocol stacks (USENIXBellevue, WA, 2012). https://www.usenix.org/conference/woot12/workshop-program/presentation/Weinmann.
Y. Zou, J. Zhu, X. Wang, L. Hanzo, A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends, vol. 104, (2016). https://doi.org/10.1109/JPROC.2016.2558521.
A. Mukherjee, Physical-Layer Security in the Internet of Things: Sensing and Communication Confidentiality Under Resource Constraints. Proc. IEEE. 103(10), 1747–1761 (2015). https://doi.org/10.1109/JPROC.2015.2466548.
Article
Google Scholar
M. Alioto, Trends in Hardware Security: From basics to ASICs. IEEE Solid-State Circ. Mag.11(3), 56–74 (2019). https://doi.org/10.1109/MSSC.2019.2923503.
Article
Google Scholar
L. Xiao, L. Greenstein, N. Mandayam, W. Trappe, Using the physical layer for wireless authentication in time-variant channels. IEEE Trans. Wirel. Commun.7(7), 2571–2579 (2008). https://doi.org/10.1109/TWC.2008.070194.
Article
Google Scholar
P. L. Yu, J. S. Baras, B. M. Sadler, Physical-layer authentication. IEEE Trans. Inf. Forensics Secur. (2008). https://doi.org/10.1109/TIFS.2007.916273.
J. Han, C. Qian, P. Yang, D. Ma, Z. Jiang, W. Xi, J. Zhao, GenePrint: Generic and Accurate Physical-Layer Identification for UHF RFID Tags. IEEE/ACM Trans. Netw.24(2), 846–858 (2016). https://doi.org/10.1109/TNET.2015.2391300.
Article
Google Scholar
C. Pei, N. Zhang, X. S. Shen, J. W. Mark, Channel-based physical layer authentication, (2014). https://doi.org/10.1109/GLOCOM.2014.7037452.
W. E. Cobb, E. D. Laspe, R. O. Baldwin, M. A. Temple, Y. C. Kim, Intrinsic Physical-Layer Authentication of Integrated Circuits. IEEE Trans. Inf. Forensics Secur.7(1), 14–24 (2012). https://doi.org/10.1109/TIFS.2011.2160170.
Article
Google Scholar
W. Hou, X. Wang, J. -Y. Chouinard, A. Refaey, Physical Layer Authentication for Mobile Systems with Time-Varying Carrier Frequency Offsets. IEEE Trans. Commun.62(5), 1658–1667 (2014). https://doi.org/10.1109/TCOMM.2014.032914.120921.
Article
Google Scholar
D. R. Reising, M. A. Temple, J. A. Jackson, Authorized and Rogue Device Discrimination Using Dimensionally Reduced RF-DNA Fingerprints. IEEE Trans. Inf. Forensics Secur.10(6), 1180–1192 (2015). https://doi.org/10.1109/TIFS.2015.2400426.
Article
Google Scholar
A. M. Ali, E. Uzundurukan, A. Kara, Assessment of Features and Classifiers for Bluetooth RF Fingerprinting. IEEE Access. 7:, 50524–50535 (2019). https://doi.org/10.1109/ACCESS.2019.2911452.
Article
Google Scholar
J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, T. Melodia, Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey, (2019). 1901.07947. https://doi.org/10.1016/j.adhoc.2019.101913.
X. Li, F. Dong, S. Zhang, W. Guo, A Survey on Deep Learning Techniques in Wireless Signal Recognition. Wirel. Commun. Mob. Comput.2019:, 1–12 (2019). https://doi.org/10.1155/2019/5629572.
Google Scholar
C. Zhang, P. Patras, H. Haddadi, Deep learning in mobile and wireless networking: a survey. CoRR. abs/1803.04311: (2018).
J. Zhang, A. Marshall, R. Woods, T. Q. Duong, Efficient Key Generation by Exploiting Randomness From Channel Responses of Individual OFDM Subcarriers. IEEE Trans. Commun.64(6), 2578–2588 (2016). https://doi.org/10.1109/TCOMM.2016.2552165.
Article
Google Scholar
W. Trappe, The challenges facing physical layer security. IEEE Commun. Mag.53(6), 16–20 (2015). https://doi.org/10.1109/MCOM.2015.7120011.
Article
Google Scholar
P. Walther, C. Janda, E. Franz, M. Pelka, H. Hellbruck, T. Strufe, E. Jorswieck, in 2018 IEEE 43rd Conf. Local Comput. Networks, vol. 2018-Octob. Improving Quantization for Channel Reciprocity Based Key Generation, (2018), pp. 545–552. https://doi.org/10.1109/LCN.2018.8638248.
Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. Cryptology ePrint Archive, Report 2003/235, (2003). https://eprint.iacr.org/2003/235.
C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, T. Güneysu, Information reconciliation schemes in physical-layer security: a survey. Comput. Netw.109:, 84–104 (2016). https://doi.org/10.1016/j.comnet.2016.06.014.
Article
Google Scholar
U. Gustavsson, C. Sanchez-Perez, T. Eriksson, F. Athley, G. Durisi, P. Landin, K. Hausmair, C. Fager, L. Svensson, On the impact of hardware impairments on massive MIMO. 1:, 294–300 (2014). https://doi.org/10.1109/GLOCOMW.2014.7063447.
J. Samuel, P. Rosson, L. Maret, C. Dehos, A. Valkanas, in 2008 IEEE 10th Int. Symp. Spread Spectr. Tech. Appl.Impact of RF Impairments in Cellular Wireless Metropolitan Area Networks, (2008), pp. 766–769. https://doi.org/10.1109/ISSSTA.2008.149.
Y. Zou, P. Zetterberg, U. Gustavsson, T. Svensson, A. Zaidi, T. Kadur, W. Rave, G. Fettweis, in 2016 IEEE Globecom Work. (GC Wkshps) (Ici). Impact of Major RF Impairments on mm-Wave Communications Using OFDM Waveforms, (2016), pp. 1–7. https://doi.org/10.1109/GLOCOMW.2016.7848927.
A. C. Polak, S. Dolatshahi, D. L. Goeckel, Identifying wireless users via transmitter imperfections. IEEE J. Sel. Areas Commun. (2011). https://doi.org/10.1109/JSAC.2011.110812.
Z. Li, L. Sun, L. Zhang, Y. Wang, Z. Yu, in 2014 IEEE Int. Conf. Electron Devices Solid-State Circuits. Effects of RF impairments on EVM performance of 802.11ac WLAN transmitters, (2014), pp. 1–2. https://doi.org/10.1109/EDSSC.2014.7061173.
R. Stuhlberger, R. Krueger, B. Adler, J. Kissing, L. Maurer, G. Hueber, A. Springer, in 2007 Eur. Conf. Wirel. Technol. (October). LTE-Downlink Performance in the Presence of RF-Impairments, (2007), pp. 189–192. https://doi.org/10.1109/ECWT.2007.4403978.
S. Salous, Radio propagation measurement and channel modelling (Wiley, 2013). isbn:978-0-470-75184-8.
B. Sklar, Digital Communications: Fundamentals and Applications, (Prentice Hall, 2017). isbn:978-0134724058.
A. Albehadili, K. Al Shamaileh, A. Javaid, J. Oluoch, V. Devabhaktuni, An Upper Bound on PHY-Layer Key Generation for Secure Communications Over a Nakagami-M Fading Channel With Asymmetric Additive Noise. IEEE Access. 6:, 28137–28149 (2018). https://doi.org/10.1109/ACCESS.2018.2827925. Accessed 13 Jan 2020.
Article
Google Scholar
M. Patzold, F. Laue, Level-Crossing Rate and Average Duration of Fades of Deterministic Simulation Models for Rice Fading Channels. IEEE Symp. Comput. Commun.48:, 272–276 (1999). https://doi.org/10.1109/ISCC.2015.7405513.
Google Scholar
A. Abdi, K. Wills, H. A. Barger, M. -S. Alouini, M. Kaveh, Comparison of the level crossing rate and average fade duration of Rayleigh, Rice and Nakagami fading models with mobile channel data, 1850–1857 (2002). https://doi.org/10.1109/vetecf.2000.886139.
C. -X. Wang, J. Bian, J. Sun, W. Zhang, M. Zhang, A Survey of 5G Channel Measurements and Models. IEEE Commun. Surv. Tutorials. 20(4), 3142–3168 (2018). https://doi.org/10.1109/COMST.2018.2862141.
Article
Google Scholar
A. Meijerink, A. Molisch, On the physical interpretation of the Saleh-Valenzuela model and the definition of its power delay profiles. IEEE Trans. Antennas Propag.62(9), 4780–4793 (2014). https://doi.org/10.1109/TAP.2014.2335812.
Article
MATH
Google Scholar
L. Bernado, T. Zemen, F. Tufvesson, A. F. Molisch, C. F. Mecklenbrauker, Delay and doppler spreads of nonstationary vehicular channels for safety-relevant scenarios. IEEE Trans. Veh. Technol.63(1), 82–93 (2014). https://doi.org/10.1109/TVT.2013.2271956. 1305.3376.
Article
Google Scholar
G. Matz, F. Hlawatsch, Fundamentals of Time-Varying Communication Channels (Elsevier, 2011). isbn:9780123744838. https://doi.org/10.1016/B978-0-12-374483-8.00001-7. https://linkinghub.elsevier.com/retrieve/pii/B9780123744838000017.
Y. C. Eldar, A. V. Oppenheim, MMSE whitening and subspace whitening. IEEE Trans. Inf. Theory. 49(7), 1846–1851 (2003). https://doi.org/10.1109/TIT.2003.813507.
Article
MathSciNet
MATH
Google Scholar
J. Zhang, A. Marshall, L. Hanzo, Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. IEEE Trans. Veh. Technol.67(12), 12462–12466 (2018). https://doi.org/10.1109/TVT.2018.2877201.
Article
Google Scholar
Y. Huang, A. Rajkotia, S. Soliman, UWB Channel Estimation: Design and Performance Evaluation, vol. 4, (2006). https://doi.org/10.1109/VETECS.2006.1683189.
V. Raghavan, J. Li, Evolution of Physical-Layer Communications Research in the Post-5G Era. IEEE Access. 7:, 10392–10401 (2019). https://doi.org/10.1109/ACCESS.2019.2891218.
Article
Google Scholar
N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. D. Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag.53(4), 20–27 (2015). https://doi.org/10.1109/MCOM.2015.7081071.
Article
Google Scholar
X. Lin, J. Li, R. Baldemair, T. Cheng, S. Parkvall, D. Larsson, H. Koorapaty, M. Frenne, S. Falahati, A. Grövlen, K. Werner, 5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology, (2018). 1806.06898.
Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, S. Li, A survey on terahertz communications. China Commun.16(2), 1–35 (2019). https://doi.org/10.12676/j.cc.2019.02.001.
Google Scholar
Fraunhofer-HHI, QUAsi Deterministic RadIo channel GenerAtor, (2019). https://quadriga-channel-model.de. Accessed 2019.
3GPP, Release 14, TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz, (2017). https://portal.3gpp.org/desktopmodules/Specifications. Accessed 2019.
Y. Cai, Z. Qin, F. Cui, G. Y. Li, J. A. McCann, Modulation and Multiple Access for 5G Networks. IEEE Commun. Surv. Tutor.20(1), 629–646 (2018). https://doi.org/10.1109/COMST.2017.2766698.
Article
Google Scholar
Wired, The Biggest iPhone News Is a Tiny New Chip Inside It, (2019). https://www.wired.com/story/apple-u1-chip. Accessed 2019.
T. Hwang, C. Yang, G. Wu, S. Li, Y. G. Li, OFDM and Its Wireless Applications: A Survey. IEEE Trans. Veh. Technol.58(4), 1673–1694 (2008). https://doi.org/10.1109/tvt.2008.2004555.
Article
Google Scholar
J. Zhang, A. Marshall, R. Woods, T. Q. Duong, Design of an OFDM Physical Layer Encryption Scheme. IEEE Trans. Veh. Technol.66(3), 2114–2127 (2017). https://doi.org/10.1109/TVT.2016.2571264.
Article
Google Scholar
J. M. Hamamreh, H. M. Furqan, H. Arslan, in 2017 13th Int. Wirel. Commun. Mob. Comput. Conf.Secure pre-coding and post-coding for OFDM systems along with hardware implementation, (2017), pp. 1338–1343. https://doi.org/10.1109/IWCMC.2017.7986479.
J. Zhang, T. Q. Duong, R. Woods, A. Marshall, Securing wireless communications of the internet of things from the physical layer, an overview, (2017). https://doi.org/10.3390/e19080420.
H. Taha, E. Alsusa, in 2015 IEEE Glob. Commun. Conf.Physical Layer Secret Key Exchange Using Phase Randomization in MIMO-OFDM, (2015), pp. 1–6. https://doi.org/10.1109/GLOCOM.2015.7417210.
Y. Liu, Z. Tan, H. Hu, L. J. Cimini, G. Y. Li, Channel estimation for OFDM. IEEE Commun. Surv. Tutorials. 16(4), 1891–1908 (2014). https://doi.org/10.1109/COMST.2014.2320074.
Article
Google Scholar
J. Hejselbaek, W. Fan, G. F. Pedersen, Ultrawideband VNA based channel sounding system for centimetre and millimetre wave bands. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC (2016). https://doi.org/10.1109/PIMRC.2016.7794728.
S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, S. V. Krishnamurthy, in Proc. 15th Annu. Int. Conf. Mob. Comput. Netw. - MobiCom ’09. On the effectiveness of secret key extraction from wireless signal strength in real environments, (2009), p. 321. https://doi.org/10.1145/1614320.1614356.
Q. Wang, H. Su, K. Ren, K. Kim, in Proc. IEEE INFOCOM. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks, (2011), pp. 1422–1430. https://doi.org/10.1109/INFCOM.2011.5934929.
K. Ren, H. Su, Q. Wang, Secret key generation exploiting channel characteristics in wireless communications. IEEE Wirel. Commun.18(4), 6–12 (2011). https://doi.org/10.1109/MWC.2011.5999759.
Article
Google Scholar
S. M. MirhoseiniNejad, A. Rahmanpour, S. M. Razavizadeh, in 2018 15th Int. ISC (Iranian Soc. Cryptology) Conf. Inf. Secur. Cryptol.Phase Jamming Attack: A Practical Attack on Physical layer-Based Key Derivation, (2018), pp. 1–4. https://doi.org/10.1109/ISCISC.2018.8546920.
E. M. Vitucci, F. Mani, T. Mazloum, A. Sibille, V. D. Esposti, Ray Tracing simulations of indoor channel spatial correlation for Physical Layer Security, (2015).
J. Xiong, K. Jamieson, in Proc. 19th Annu. Int. Conf. Mob. Comput. Netw. - MobiCom ’13. SecureArray, (2013), p. 441. https://doi.org/10.1145/2500423.2500444.
P. Sedlacek, M. Slanina, P. Masek, An Overview of the IEEE 802.15.4z Standard its Comparison and to the Existing UWB Standards, (2019). https://doi.org/10.1109/RADIOELEK.2019.8733537.
V. Niemela, J. Haapola, M. Hamalainen, J. Iinatti, An Ultra Wideband Survey: Global Regulations and Impulse Radio Research Based on Standards. IEEE Commun. Surv. Tutor.19(2), 874–890 (2017). https://doi.org/10.1109/COMST.2016.2634593.
Article
Google Scholar
J. A. R. Ruiz, S. F. Granja, Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE Trans. Instrum. Meas.66(8), 2106–2117 (2017). https://doi.org/10.1109/TIM.2017.2681398.
Article
Google Scholar
A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, E. Aboutanios, Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor.19(2), 1327–1346 (2017). https://doi.org/10.1109/COMST.2016.2632427.
Article
Google Scholar
M. Ko, D. L. Goeckel, Wireless physical-layer security performance of UWB systems, (2010). https://doi.org/10.1109/MILCOM.2010.5680483.
M. Singh, P. Leu, S. Capkun, UWB with Pulse Reordering: Securing Ranging against Relay and Physical-Layer Attacks. Proc. 2019 Netw. Distrib. Syst. Secur. Symp. (2019). https://doi.org/10.14722/ndss.2019.23109.
M. G. Madiseh, M. L. McGuire, S. W. Neville, A. A. B. Shirazi, in Proc. 6th Annu. Commun. Networks Serv. Res. Conf. CNSR 2008. Secret key extraction in ultra wideband channels for unsynchronized radios, (2008). https://doi.org/10.1109/CNSR.2008.52.
G. M. Madiseh, S. He, M. L. Mcguire, S. W. Neville, X. Dong, Verification of Secret Key Generation from UWB Channel Observations, (2009). https://doi.org/10.1109/ICC.2009.5199564.
R. Wilson, D. Tse, R. A. Scholtz, Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels. IEEE Trans. Inf. Forensics Secur.2(3), 364–375 (2007). https://doi.org/10.1109/TIFS.2007.902666.
Article
Google Scholar
M. Bulenok, I. Tunaru, L. Biard, B. Denis, B. Uguen, Experimental channel-based secret key generation with integrated ultra wideband devices, (2016). https://doi.org/10.1109/PIMRC.2016.7794705.
R. Muller, R. Herrmann, D. A. Dupleich, C. Schneider, R. S. Thoma, in 8th Eur. Conf. Antennas Propag. (EuCAP 2014). Ultrawideband multichannel sounding for mm-wave, (2014), pp. 817–821. https://doi.org/10.1109/EuCAP.2014.6901887.
T. Kuseler, I. A. Lami, Using Geographical Location as an Authentication Factor to Enhance mCommerce Applications on Smartphones. Int. J. Comput. Sci. Secur.6:, 277–287 (2012).
Google Scholar
S. T. -B. Hamida, J. -B. Pierrot, B. Denis, C. Castelluccia, B. Uguen, On the Security of UWB Secret Key Generation Methods against Deterministic Channel Prediction Attacks, (2012). https://doi.org/10.1109/VTCFall.2012.6399358.
L. E. Bassham, et al., NIST. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-22, (2010). https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic. Accessed 2019.
M. S. Turan, et al., NIST: Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B, (2018). https://csrc.nist.gov/publications/detail/sp/800-90b/final. Accessed 2019.
H. Okada, K. Umeno, Randomness Evaluation With the Discrete Fourier Transform Test Based on Exact Analysis of the Reference Distribution. IEEE Trans. Inf. Forensics Secur.12(5), 1218–1226 (2017). https://doi.org/10.1109/TIFS.2017.2656473. arXiv:1701.01960v1.
Article
Google Scholar
J. Kelsey, K. A. McKay, M. S. Turan, Predictive Models for Min-Entropy Estimation. Cryptology ePrint Archive, Report 2015/600, (2015). https://eprint.iacr.org/2015/600.
S. Zhu, Y. Ma, T. Chen, J. Lin, J. Jing, Analysis and improvement of entropy estimators in NIST SP 800-90B for non-IID entropy sources. IACR Trans. Symmetric Cryptol.3:, 151–168 (2017). https://doi.org/10.13154/tosc.v2017.i3.151-168.
Google Scholar
T. Van Nguyen, Y. Jeong, H. Shin, M. Z. Win, Machine Learning for Wideband Localization. IEEE J. Sel. Areas Commun.33(7), 1357–1380 (2015). https://doi.org/10.1109/JSAC.2015.2430191.
Article
Google Scholar
M. I. AlHajri, N. T. Ali, R. M. Shubair, Classification of Indoor Environments for IoT Applications: A Machine Learning Approach. IEEE Antennas Wirel. Propag. Lett.17(12), 2164–2168 (2018). https://doi.org/10.1109/LAWP.2018.2869548.
Article
Google Scholar
E. Kurniawan, L. Zhiwei, S. Sun, in 2017 IEEE Glob. Commun. Conf. GLOBECOM 2017 - Proc. vol. 2018-Janua. Machine Learning-Based Channel Classification and Its Application to IEEE 802.11ad Communications, (2018), pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254052.