Spectrum Policy Task Force Report. 2002. FCC ET Docket 02-155
Mitola J: Software radios: survey, critical evaluation and future directions. IEEE Aerosp Electron Syst Mag 1993, 8(4):25-31.
Google Scholar
Mitola J, Maguire GQ: Cognitive radio: making software radios more personal. IEEE Personal Commun 1999, 6(4):13.
Google Scholar
Haykin S: Cognitive radio: Brain-empowered wireless communication. IEEE J Sel Areas Commun 2005, 23: 201-220.
Google Scholar
Jondral FK: Software-defined radio-basics and evolution to cognitive radio. EURASIP J Wirel Commun Netw 2005, 2005: 275-283.
Google Scholar
Akyildiz IF, Lee W-Y, Mohanty S: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput Netw 2006, 50: 2127-2159.
Google Scholar
Stevenson C, Chouinard G, Lei Z-D, Hu W-D, Shellhammer S, Caldwell W: IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Commun Mag 2009, 47(1):130.
Google Scholar
Ghasemi A, Sousa ES: Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Commun Mag 2008, 46(4):32-39.
Google Scholar
Ma J, Li GY, Juang BH: Signal processing in cognitive radio. Proc IEEE 2010, 97(5):805-823.
Google Scholar
Haykin S, Thomson DJ, Reed JH: Spectrum sensing for cognitive radio. Proc IEEE 2010, 97(5):849-877.
Google Scholar
Sahai A, Hoven N, Tandra R: Some fundamental limits in cognitive radio, in. Proc Allerton Conf Commun Control Comput 2004.
Google Scholar
Cabric D, Mishra SM, Brodersen RW: Implementation issues in spectrum sensing for cognitive radios, in. Proc Asilomar Conf Signals, Syst Comput 2004.
Google Scholar
Zhao Q, Sadler B: A survey of dynamic spectrum access. IEEE Signal Process Mag 2007, 24(3):79-89.
Google Scholar
Clancy T: Achievable capacity under the interference temperature model, in. Proc 26th IEEE Int Conf Comput Commun (INFOCOM) 2007.
Google Scholar
Bohara VA, Ting SH, Han Y, Pandharipande A: Interference-free overlay cognitive radio network based on cooperative space time coding, in. Proc 5th Int Conf on Cognitive Radio Oriented Wireless Netw and Commun 2010.
Google Scholar
Ghozzi M, Dohler M, Marx F, Palicot J: Cognitive radio: methods for the detection of free bands. Comptes Rendus Physique 2006, 7(7):74-81.
Google Scholar
Ghasemi A, Sousa ES: Impact of user collaboration on the performance of opportunistic spectrum schemes, in. Proc IEEE Veh Technol Conf 2006.
Google Scholar
HLV Trees In Detection, Estimation and Modulation Theory: Part I. John Wiley & Sons Inc., New York; 2001.
Google Scholar
Taherpour A, Nasiri-Kenari M, Gazor S: Multiple antenna spectrum sensing in cognitive radios. IEEE Trans Wirel Commun 2010, 9: 814-823.
Google Scholar
Lei Z-D, Chin FPS: Sensing OFDM systems under frequency-selective fading channels. IEEE Trans Veh Technol 2010, 6(4):1960-1968.
Google Scholar
Axell E, Larsson EG: Optimal and sub-optimal spectrum sensing of OFDM signals in known and unknown noise variance. IEEE J Sel Areas Commun 2011, 29: 290-304.
Google Scholar
Wald A: Sequential Analysis. John Wiley & Sons Inc., New York; 1947.
Google Scholar
Sun Z-W, Bradfor GJ, Laneman JN: Sequence detection algorithms for PHY-layer sensing in dynamic spectrum access networks. IEEE J Sel Topics Signal Process 2011, 5(1):97-109.
Google Scholar
Sonnenschein A, Fishman PM: Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE J Sel Topics Signal Process 2008, 2(1):4-17.
Google Scholar
Tandra R, Sahai A: SNR walls for signal detection. IEEE J Sel Topics Signal Process 2008, 2(1):4-17.
Google Scholar
Jouini W: Energy detection limits under log-normal approximated noise uncertainty. IEEE Signal Process Lett 2011, 18(7):423-426.
Google Scholar
Ghozzi M, Marx F, Dohler M, Palicot J: Cyclostatilonarilty-based test for detection of vacant frequency bands, in. Proc 2nd Int Conf on Cognitive Radio Oriented Wireless Netw and Commun 2006.
Google Scholar
Sutton PD, Nolan KE, Doyle LE: Cyclostationary signature in practial cognitive radio applications. IEEE J Sel Areas Commun 2008, 26: 13-24.
Google Scholar
Gardner W: Signal interception: A unifying theoretical framework for feature detection. IEEE Trans Commun 1988, 8: 897-906.
Google Scholar
Quan Z, Zhang WY, Shellhammer SJ, Sayed AH: Optimal spectral feature detection for spectrum sensing at very low SNR. IEEE Trans Commun 2011, 51: 201-212.
Google Scholar
Khalaf Z, Nafkha A, Palicot J, Ghozzi M: Hybrid spectrum sensing architecutre for cognitive radio equipment, in. Proc 6th Advanced Int Conf on Telecommun 2010.
Google Scholar
Zeng YH, Liang YC: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans Commun 2009, 57: 1784-1793.
Google Scholar
Kortun A, Ratnarajah T, Sellathurai CM, Zhong , Papadias CB: On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE J Sel Topics Signal Process 2011, 5(1):49-55.
Google Scholar
Cui T, Tang J, Gao F, Tellambura C: Moment-based parameter estimation and blind spectrum sensing for quadrature amplitude modulation. IEEE Trans Commun 2011, 59: 613-623.
Google Scholar
Cordeiro C, Ghosh M, Cavalcanti D, Challapali K: Spectrum sensing for dynamic spectrum access of TV bands, in. Proc 2nd Int Conf on Cognitive Radio Oriented Wireless Netw and Commun 2007.
Google Scholar
Liang YC, Zeng YH, Peh ECY, Hoang AT: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans Wireless Commun 2008, 7: 1326-1337.
Google Scholar
Zou Y-L, Yao Y-D, Zheng BY: Outage probability analysis of cognitive transmissions: Impact of spectrum sensing overhead. IEEE Trans Wirel Commun 2010, 9: 2676-2688.
Google Scholar
Hoang AT, Liang YC, Zeng YH: Adaptive joint scheduling of spectrum sensing and data transmission in cognitive radio networks. IEEE Trans Commun 2010, 58: 235-246.
Google Scholar
Kim H, Shin KG: Efficient discovery of spectrum opportunities with mac-layer sensing in cognitive radio networks. IEEE Trans Mobile Comput 2008, 7(5):533-545.
MathSciNet
Google Scholar
Song SH, Hamdi K, Letaief KB: Spectrum sensing with active cognitive systems. IEEE Trans Wirel Commun 2010, 9: 1849-1854.
Google Scholar
Sahai A, Cabric D: A tutorial on spectrum sensing: Fundamental limits and practical challenges, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2005.
Google Scholar
Hoseini PP, Beaulieu NC: An optimal algorithm for wideband spectrum sensing in cognitive radio systems, in. Proc IEEE Int Conf Commun (ICC) 2010.
Google Scholar
Paysarvi-Hoseini P, Beaulieu NC: Optimal wideband spectrum sensing framework for cognitive radio systems. IEEE Trans Signal Process 2011, 59: 1170-1182.
MathSciNet
Google Scholar
Quan Z, Cui S, Sayed AH, Poor HV: Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans Signal Process 2009, 57: 1128-1140.
MathSciNet
Google Scholar
Qu D-M, Ding J, Jiang T, Sun X-J: Detection of non-contiguous OFDM symbols for cognitive radio systems without out-of-band spectrum synchronization. IEEE Trans Wirel Commun 2011, 10: 693-701.
Google Scholar
Ma J, Zhao GD, Li YG: Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans Wirel Commun 2008, 7: 4502-4506.
Google Scholar
Quan Z, Cui S, Sayed AH: Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE J Sel Topics Signal Process 2008, 2(1):28-40.
Google Scholar
Taricco G: Optimization of linear cooperative spectrum sensing for cognitive radio networks. IEEE J Sel Topics Signal Process 2011, 5(1):77-86.
Google Scholar
Fan R, Jiang H: Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Trans Wirel Commun 2010, 9: 1128-1138.
Google Scholar
Sanna M, Murroni M: Optimization of non-convex multiband cooperative sensing with genetic algorithms. IEEE J Sel Topics Signal Process 2011, 5(1):87-96.
Google Scholar
Peh ECY, Liang YC: Optimization for cooperative sensing in cognitive radio networks. Proc IEEE Wireless Commun and Networking Conf (WCNC) 2007.
Google Scholar
Peh ECY, Liang YC, Guan YL, Zeng YH: Optimization of cooperative sensing in cognitive radio networks: a sensing-throughput tradeoff view. IEEE Trans Veh Technol 2010, 58: 5294-5299.
Google Scholar
Han W, Li J, Tian Z, Zhang Y: Efficient cooperative spectrum sensing with minimum overhead in cognitive radio. IEEE Trans Wirel Commun 2010, 9(3):3006-3010.
Google Scholar
Peh ECY, Liang YC, Guan YL, Zeng YH: Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Trans Wire Commun 2010, 9: 3838-3847.
Google Scholar
Unnikrishnan J, Veeravalli VV: Cooperative sensing for primary detection in cognitive radio. IEEE J Sel Topics Signal Process 2008, 2(1):18-27.
Google Scholar
Min AW, Zhang X, Shin KG: Detection of small-scale primary users in cognitive radio networks. IEEE J Sel Areas Commun 2011, 29: 349-361.
Google Scholar
Song C, Zhang Q: Cooperative spectrum sensing with multi-channel coordination in cognitive radio networks, in. Proc IEEE Int Conf Commun (ICC) 2010.
Google Scholar
Kaligineedi P, Bhargava VK: Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system. IEEE Trans Wirel Commun 2011, 10: 284-293.
Google Scholar
Sahai A, Tandra R, Mishra S, Hoven N: Fundamental design tradeoffs in cognitive radio systems, in. Proc 1st Int Workshop Technol Policy for Accessing Spectrum 2006.
Google Scholar
Zou Q-Y, Zheng SF, Sayed AH: Cooperative sensing via sequential detection. IEEE Trans Signal Process 2010, 58: 6266-6283.
MathSciNet
Google Scholar
Kim S-J, Giannakis GB: Sequential and cooperative sensing for multi-channel cognitive radios. IEEE Trans Signal Process 2010, 58: 4239-4253.
MathSciNet
Google Scholar
Meng J, Yin J, Li W, Hossain H, Zhu EH: Collaborative spectrum sensing from sparse observations in cognitive radio networks. IEEE J Sel Areas Commun 2011, 29: 327-337.
Google Scholar
Kim S-J, Anese ED, Giannakis GB: Cooperative spectrum sensing for cognitive radios using kriged kalman filtering. IEEE J Sel Topics Signal Process 2011, 5(1):24-36.
Google Scholar
Ganesan G, Li YG: Cooperative spectrum sensing in cognitive radio part I: Two user networks. IEEE Trans Wireless Commun 2007, 6(6):2204-2213.
Google Scholar
Ganesan G, Li YG: Cooperative spectrum sensing in cognitive radio part II: Multiuser networks. IEEE Trans Wirel Commun 2007, 6: 2214-2222.
Google Scholar
Chen Q, Motani M, Wong W-CL: A Nallanathan, Cooperative spectrum sensing strategies for cognitive radio mesh networks. IEEE J Sel Topics Signal Process 2011, 5(1):56-67.
Google Scholar
Zhang ZH, Li H-S, Yang DP, Pei C-X: Space-time bayesian compressed spectrum sensing for wideband cognitive radio networks, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2010.
Google Scholar
Zeng F, Li C, Tian Z: Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE J Sel Topics Signal Process 2011, 5(1):37-48.
Google Scholar
Celebi H, Guvenc I, Gezici S, Arslan H: Cognitive-radio systems for spectrum, location, environmental awareness. IEEE Antennas propag Mag 2010, 52(4):41-61.
Google Scholar
Celebi H, Arslan H: Utilization of location information in cognitive wireless networks. IEEE Commun Mag 2007, 14(4):6-13.
Google Scholar
Celebi H, Arslan H: Adaptive positioning systems for cognitive radios, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2007.
Google Scholar
Wang L, Chen A: Effects of location awareness on concurrent transmissions for cognitive ad hoc networks overlaying infratructure-based systems. IEEE Trans Mobile Comput 2009, 8(5):577-589.
Google Scholar
Gorcin A: Rss-based location awareness for public safety cognitive radio, in. Proc IEEE Wireless VITAE 2009.
Google Scholar
Zou Y-L, Yao Y-D, Zheng BY: A selective-relay based cooperative spectrum sensing scheme without dedicated reporting channels in cognitive radio networks. IEEE Trans Wirel Commun 2011, 10(4):1188-1198.
Google Scholar
Zhou XW, Ma J, YG Li, Kwon Y, Soong A: Probability-based combination for cooperative spectrum sensing. IEEE Trans Commun 2010, 58: 463-466.
Google Scholar
Chen YF, Beaulieu NC: Performance of collaborative spectrum sensing for cognitive radio in the presence of gaussian channel estimation errors. IEEE Trans Commun 2009, 57: 1944-1947.
Google Scholar
Musavian L, Aissa S: Capacity and power allocation for spectrum-sharing communications in fading channels. IEEE Trans Wirel Commun 2009, 8: 148-156.
Google Scholar
Kang X, Liang YC, Nallanathan A, Garg HK, Zhang R: Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Trans Wirel Commun 2009, 8: 940-950.
Google Scholar
Srinivasa S, Jafar SA: Soft sensing and optimal power control for cognitive radio. IEEE Trans Wirel Commun 2010, 9: 3638-3649.
Google Scholar
Asghari V, Aissa S: Adaptive rate and power transmission in spectrum-sharing systems. IEEE Trans Wirel Commun 2010, 9: 3272-3280.
Google Scholar
Han S-W, Kim H, Han Y, Cioffi JM: Efficient power allocation schemes for nonconvex sum-rate maximization on gaussian cognitive MAC. IEEE Trans Commun 2010, 58: 753-757.
Google Scholar
Zhang R: On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Trans Wirel Commun 2009, 8: 2112-2120.
Google Scholar
Kang X, Zhang R, Liang YC, Garg HK: Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE J Sel Areas Commun 2011, 29: 374-383.
Google Scholar
Huang S, Liu X, Ding Z: Decentralized cognitive radio control based on inference from primary link control information. IEEE J Sel Areas Commun 2011, 29: 394-406.
Google Scholar
Son K, Jung BC, Chong S, Sung DK: Opportunistic underlay transmission in multi-carrier cognitive radio systems, in. Proc IEEE Wireless Commun and Networking Conf (WCNC) 2009.
Google Scholar
Son K, Jung BC, Chong S, Sung DK: Power allocation for OFDM-based cognitive radio systems under outage constraints, in. Proc IEEE Int Conf Commun (ICC) 2010.
Google Scholar
Kang X, Garg HK, Liang YC, Zhang R: Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE Trans Wirel Commun 2010, 9: 2066-2075.
Google Scholar
Zhou X, Li GY, Li D, Wang D, Soong ACK: Probabilistic resource allocation for opportunistic spectrum access. IEEE Trans Wireless Commun 2010, 9: 2870-2879.
Google Scholar
Hoang AT, Liang YC: Downlink channel assignment and power control for cognitive radio networks. IEEE Trans Wirel Commun 2008, 7: 3106-3117.
Google Scholar
Bansal G, Hossain MJ, Bhargava VK: Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Trans Wirel Commun 2008, 7: 4710-4718.
Google Scholar
Hasan Z, Bansal G, Hossain E, Bhargava VK: Energy-efficient power allocation in OFDM-based cognitive radio systems: a risk-return model. IEEE Trans Wirel Commun 2009, 8: 6078-6088.
Google Scholar
Zhang L, Liang YC, Xin Y: Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE J Sel Areas Commun 2008, 26: 38-51.
Google Scholar
Xiong ZL, Cumanan K, Lambotharan S: Robust SINR balancing technique for a cognitive radio network using probability based interference constraints, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2010.
Google Scholar
Zhang Y-JA, So AM-C: Optimal spectrum sharing in MIMO cognitive radio networks via semidefinite programming. IEEE J Sel Areas Commun 2011, 29: 362-373.
Google Scholar
Islam MH, Liang YC, Hoang AT: Joint power control and beamforming for cognitive radio networks. IEEE Trans Wirel Commun 2008, 7: 2415-2419.
Google Scholar
Mietzner J, Lampe L, Schober R: Distributed transmit power allocation for multihop cognitive radio systems. IEEE Trans Wirel Commun 2009, 8: 5187-5201.
Google Scholar
Zhao GD, Yang CY, Li GY, Li D-D, Soong A: Power and channel allocation for cooperative relay in cognitive radio networks. IEEE J Sel Topics Signal Process 2011, 15(1):151-159.
Google Scholar
Wang R, Lau VKN, Cui Y: Decentralized fair scheduling in two-hop relay-assisted cognitive OFDMA systems. IEEE J Sel Topics Signal Process 2011, 15(1):171-181.
MathSciNet
Google Scholar
Ji Z, Liu KJR: Dynamic spectrum sharing: A game theoretical overview. IEEE Commun Mag 2007, 45: 88-94.
MathSciNet
Google Scholar
Lin Y-E, Liu K-H, Hsieh HY: Design of power control protocols for spectrum sharing in cognitive radio networks: A game-theoretic perspective, in. Proc IEEE Int Conf Commun (ICC) 2010.
Google Scholar
Buzzi S, Saturnino D: A game-theoretic approach to energy-efficient power control and receiver design in cognitive CDMA wireless networks. IEEE J Sel Topics Signal Process 2011, 5(1):137-150.
Google Scholar
Tian Z, Leus G, Lottici V: Joint dynamic resource allocation and waveform adaptation for cognitive networks. IEEE J Sel Areas Commun 2011, 29: 443-454.
Google Scholar
Jayaweera SK, Vazquez-Vilar G, Mosquera C: Dynamic spectrum leasing: A new paradigm for spectrum sharing in cognitive radio networks. IEEE Trans Veh Technol 2010, 59(5):2328-2339.
Google Scholar
El-Howayek G, Jayaweera SK: Distributed dynamic spectrum leasing (d-dsl) for spectrum sharing over multiple primary channels. IEEE Trans Wirel Commun 2011, 10: 55-60.
Google Scholar
Wu Y-L, Wang BB, Liu KJR, Clancy TC: Repeated open spectrum sharing game with cheat-proof strategies. IEEE Trans Wirel Commun 2009, 8: 1922-1933.
Google Scholar
Li H-S, Han Z: Dogfight in spectrum combating primary user emulation attacks in cognitive radio systems, part i known channel statistics. IEEE Trans Wirel Commun 2010, 9: 3566-3577.
Google Scholar
Li H-S, Han Z: Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems-part ii: Unknown channel statistics. IEEE Trans Wirel Commun 2011, 10: 274-283.
MathSciNet
Google Scholar
Akyildiz IF, Lee W-Y, Vuran MC, Mohanty S: A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 2008, 46(4):40-48.
Google Scholar
Lee W-Y, Akyildiz IF: A spectrum decision framework for cognitive radio networks. IEEE Trans Mobile Comput 2011, 10(2):161-174.
Google Scholar
Vucevic N, Perez-Romero J, Sallent O, Agusti R: Reinforcement learning for dynamic spectrum management in WCDMA. Telfor J 2009, 1(1):6-9.
Google Scholar
Jouini W, Ernst D, Moy C, Palicot J: Upper confidence bound based decision making strategies and dynamic spectrum access, in. Proc IEEE Int Conf Commun (ICC) 2010.
Google Scholar
Jouini W, Moy C, Palicot J: Upper confidence bound algorithm for opportunistic spectrum access with sensing errors, in. Proc 6th Int Conf on Cognitive Radio Oriented Wireless Netw and Commun 2011.
Google Scholar
Zhu X, Shen L, Yum T: Analysis of cognitive radio spectrum access with optimal channel reservation. IEEE Commun Lett 2007, 11(4):304-306.
Google Scholar
Song Y, Xie JL: Prospect: A proactive spectrum handoff framework for cognitive radio ad hoc networks without common control channel. IEEE Trans Mobile Comput (to appear, 2011)
Google Scholar
Wang L, Wang C, Chang C: Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Trans Mobile Comput (to appear, 2011)
Google Scholar
Kushwaha H, Xing Y, Chandramouli R, Heffes H: Reliable multimedia transmission over cogntiive radio networks using fountain codes. Proc IEEE 2008, 96(1):155-165.
Google Scholar
Willkomm D, Gross J, Wolisz A: Reliable link maintenance in cognitive radio systems, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2005.
Google Scholar
Lee J, Wang H, Andrews JG, Hong D: Outage probability of cognitive relay networks with interference constraints. IEEE Trans Wirel Commun 2011, 10: 390-395.
Google Scholar
Zhao GD, Ma J, Li GY, Wu T, Kwon Y, Soong A, Yang CY: Spatial spectrum holes for cognitive radio with relay-assisted directional transmission. IEEE Trans Wirel Commun 2009, 8: 5270-5279.
Google Scholar
Han Y, Ting SH, Pandharipande A: Cooperative spectrum sharing protocol with secondary user selection. IEEE Trans Wirel Commun 2009, 9: 2912-2923.
Google Scholar
Zou Y-L, Zhu J, Zheng BY, Yao Y-D: An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Trans Signal Process 2010, 58: 5438-5445.
MathSciNet
Google Scholar
Li L-Y, Zhou XW, Xu H-B, Li GY, Wang DD, Soong A: Simplified relay selection and power allocation in cooperative cognitive radio systems. IEEE Trans Wirel Commun 2011, 10: 33-36.
Google Scholar
Zou Y-L, Yao Y-D, Zheng BY: Cognitive transmissions with multiple relays in cognitive radio networks. IEEE Trans Wirel Commun 2011, 10: 648-659.
Google Scholar
Han Y, Pandharipande A, Ting SH: Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Trans Wirel Commun 2009, 8: 4945-4950.
Google Scholar
Manna R, Louie R, Li Y, Vucetic B: Cooperative amplify-and-forward relaying in cognitive radio networks, in. Proc 5th Int Conf on Cognitive Radio Oriented Wireless Netw and Commun 2010.
Google Scholar
Shen C, Fitz MP: Opportunistic spatial orthogonalization and its application in fading cognitive radio networks. IEEE J Sel Topics Signal Process 2011, 5(1):182-188.
Google Scholar
Stotas S, Nallanathan A: Optimal sensing time and power allocation in multiband cognitive radio networks. IEEE Trans Commun 2011, 51: 226-235.
Google Scholar
Zhang R: On active learning and supervised transmission of spectrum sharing based cognitive radios by exploiting hidden primary radio feedback. IEEE Trans Commun 2010, 58: 2960-2970.
Google Scholar
Eswaran K, Gastpar M, Ramchandran K: Cognitive radio through primary control feedback. IEEE J Sel Areas Commun 2011, 29: 384-393.
Google Scholar
Zhang R, Gao F-F, Liang YC: Cognitive beamforming made practical: Effective interference channel and learning-throughput tradeoff. IEEE Trans Commun 2010, 58: 706-718.
Google Scholar
Unlicensed Operations in the TV Broadcast Bands, Second Memorandum Opinion and Order. 2010. FCC 10-174
Wang J, Shosh M, Challapali K: Emerging cognitive radio applications: a survey. IEEE Commun Mag 2011, 49(3):74-81.
Google Scholar
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access; Medium Access Control Protocol Specification, (Release 8). 2010. 3GPP Standard TS 36.321
System Description Document. 2009. IEEE Standard 802.16m
Gorcin A, Arslan H: Public safety and emergency case communications: opportunities from the aspect of cognitive radio, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2008.
Google Scholar
Pawelczak P, Prasad RV, Xia L, Niemegeers I: Cognitive radio emergency networks--requirements and design, in. Proc IEEE Int Symp on New Frontier in Dynamic Spectrum Access Networks (DySPAN) 2005.
Google Scholar
Jondral FK: Cognitive radio: A communications engineering view. IEEE Wirel Commun 2007, 14(4):28-33.
Google Scholar
Wang BB, Liu KJR: Advances in cognitive radio networks: a survey. IEEE J Sel Topics Signal Process 2011, 5(1):5-23.
Google Scholar
Sum C-S, Harada H, Kojima F, Lan Z, Funada R: Smart utility networks in TV white space. IEEE Commun Mag 2011, 49(7):132-139.
Google Scholar
Mitola J, Attar A, Zhang H, Holland O, Harada H, Aghvami H: Special issue on achievements and the road ahead: the first decade of cognitive radio. IEEE Trans Veh Technol 2010., 59(4):
Google Scholar