 Research
 Open Access
 Published:
Delay performance of cognitive radio networks for pointtopoint and pointtomultipoint communications
EURASIP Journal on Wireless Communications and Networking volume 2012, Article number: 9 (2012)
Abstract
In this article, we analyze the packet transmission time in spectrum sharing systems where a secondary user (SU) simultaneously accesses the spectrum licensed to primary users (PUs). In particular, under the assumption of an independent identical distributed Rayleigh block fading channel, we investigate the effect of the peak interference power constraint imposed by multiple PUs on the packet transmission time of the SU. Utilizing the concept of timeout, exact closedform expressions of outage probability and average packet transmission time of the SU are derived. In addition, employing the characteristics of the M/G/1 queuing model, the impact of the number of PUs and their peak interference power constraint on the stable transmission condition and the average waiting time of packets at the SU are examined. Moreover, we then extend the analysis for pointtopoint to pointtomultipoint communications allowing for multiple SUs and derive the related closedform expressions for outage probability and successful transmission probability for the best channel condition. Numerical results are provided to corroborate our theoretical results and to illustrate applications of the derived closedform expressions for performance evaluation of cognitive radio networks.
1. Introduction
Radio spectrum is one of the most precious and limited resources in wireless communications. It has become scarce due to the rapid growth of a variety of mobile devices and the emerging of many new mobile services. However, recent measurement campaigns conducted by the Federal Communications Commission in the United States have revealed that vast portions of the allocated spectrum are heavily underutilized [1]. Clearly, the scarcity of the spectrum is due to its inefficient usage rather than a shortage of spectrum resources. As a consequence, the spectrum utilization problem has become more crucial and has stimulated new research such as extensive work on cognitive radio networks (CRN) [2]. In CRNs, there are two types of users who are referred to as primary user (PU) and secondary user (SU). The PU licenses the spectrum while a SU may access the spectrum owned by the PU provided that it does not compromise the quality of service (QoS) delivered to the PU. Therefore, a major challenge with the design of CRNs is to maintain the desirable QoS at the PU while offering a sufficiently high transmission rate to the SUs.
Recently, the spectrum sharing approach is considered as a promising solution to utilize the licensed radio frequency. Particularly, the SU and the PU can transmit simultaneously as long as the interference caused by the SU to the PU is lower than a predefined threshold. In [3], considering different fading channels, the ergodic capacity of the spectrum sharing system is investigated for either peak interference power constraint or average received interference power at the primary receiver (PURx). This work has revealed that if the link from the secondary transmitter (SUTx) to the PURx resides in a deep fade, the power of the SUTx can be increased to improve the link to the SURx without compromising the peak interference power constraint. Later, the fundamental capacity limits with imperfect channel knowledge have been studied in [4, 5]. In [6], the authors have considered a new sophisticated approach for spectrum sharing systems where the impact of channel knowledge on the performance of a secondary user has been studied. The results show that the channel knowledge of the primary transmitter (PUTx)→PURx link is important to mitigate the interference from the SUTx→PURx link while the channel knowledge of the SUTx→PURx link has little impact on the SU capacity. In [7], different notions of capacity are investigated for the Rayleigh fading channel subject to both the peak and average interference power constraints. Especially, the ergodic capacity and outage capacity which are considered suitable for delayinsensitive and delaysensitive applications are studied. In [8–10], the novel concept of effective capacity has been introduced to investigate the QoS requirements such as delay constraint in wireless communication systems. In particular, the effective capacity is defined as the maximum constant arrival rate that can be provided by the channel while the delay constraint of the spectrum sharing system is satisfied [9]. The results in [9] have also shown that for a given peak and average interference power constraint at the PURx, the maximal effective capacity is achieved under the optimal power control policy. In relation to the delay constraint in the spectrum sharing system, in [11, 12], we have used another approach, which is based on the packet transmission time to investigate the performance of CRN. These results have revealed the impact of the peak interference power constraint on the delay of packets for different types of fading channels. However, we analyzed the spectrum sharing system with peak interference power constraint only for a single PU.
In this article, we therefore extend our previous work [11] to consider the more realistic case of a CRN under the peak interference power constraint in the presence of multiple PUs. Specifically, we examine the delay performance for two scenarios, pointtopoint and pointtomultipoint communications. In the latter scenario, we extend the investigation from multiple PUs to also allow for multiple SUs at the receiving end. We assume that each packet of the SUTx has a delay constraint. In order to not cause harmful interference to any surrounding PURx, the SUTx needs to adapt its transmit power and commence transmission before the packet delay threshold is reached. Given this setting, in the pointtopoint scenario, we derive the probability density function (PDF) and cumulative density function (CDF) for the packet transmission time, outage probability and average transmission time of packets at the SUTx. Furthermore, assuming that packet arrivals at the SUTx follow a Poisson process, the queueing model for pointtopoint scenario can be described as an M/G/1 system in which packet interarrival times are exponentially distributed, service time is a general distribution and traffic is processed by a single server. In the pointtomultipoint scenario, also known as multicast, a secondary base station (SBS) transmits a common packet to all SURx while keeping the peak interference power to the surrounding PURx below a given threshold. By applying the obtained PDF and CDF for the pointtopoint scenario, a closedform expression for the outage probability that the SBS cannot transmit the common packet successfully to a number of SURx are obtained. Moreover, a closedform expression for the probability that the SBS can transmit the common packet successfully to all SURx, i.e. the best channel condition, is also achieved.
The rest of the article is organized as follows. In Section 2, the system model and assumptions for the pointtopoint and pointtomultipoint scenarios are introduced. In Section 3, analytical formulations for the pointtopoint scenario such as the PDF and CDF of the packet transmission time, the outage probability, and the moment of packet transmission time is derived. On this basis, queueing theoretical conclusions are drawn. In Section 4, we present the delay performance for the pointtomultipoint scenario. Section 5 provides numerical results and discussions. Finally, conclusions are presented in Section 6.
2. System model
In the sequel, we introduce the pointtopoint and pointtomultipoint scenarios in the context of a spectrum sharing system where the SU operates in the area of multiple PUs. As for the radio links between the different entities, we assume identical and independent distributed (i.i.d.) Rayleigh block fading channels with unitmean in the presence of additive white Gaussian noise (AWGN). The additive noises at both SURx and PURx constitute independent circular symmetric complex Gaussian random variables with zeromean and variance N_{0}, denoted as \mathcal{C}\mathcal{N} (0,N_{0}). As the SU and the PUs may transmit simultaneously, the interference caused by the SU to the PUs should not exceed a certain threshold.
2.1. Pointtopoint scenario
Let us consider pointtopoint communications in which an SUTx is transmitting packets to an SURx while a number M of PURx are operating on the primary network as shown in Figure 1. The power gain of the SUTx→SURx link is denoted by h_{1}. Similarly, the interference channel power gain of the SUTx→PURx_{ m }link is denoted by g_{ m }, m = 1, 2,..., M. Note that channel state information (CSI) of the secondary system can be provided to the SUTx through feedback from the SURx while CSI of the SUTx to the PURx can be exchanged using a dedicated common control channel [13]. In our study we follow the assumption given in [3, 5, 14, 15] that the SUTx is close to the PURx but the SURx is far away from the PUTx. Therefore, only the SUTx causes interference to the PURx while interference caused by the PUTx to the SURx is lumped with the AWGN.
2.1.1. Peak interference power constraint
In order to process the offered traffic, the SUTx is equipped with a buffer which stores incoming packets of the same size. The SUTx transforms the stored packets into bit streams and adopts its transmission power based on the joined CSI which shall be denoted as (M + 1)tuple (g_{1}, g_{2},..., g_{ M }; h_{1}). The main objective for the considered spectrum sharing system may be posed as to minimize the transmission time of packets at the SU while not causing harmful interference to the PURx. Following [16], the time taken by an SURx to decode L bits information of a packet can be expressed as
where B is the system bandwidth, \stackrel{\u0303}{\mathsf{\text{B}}}=L{\text{log}}_{e}\left(2\right)/B, and γ is the signaltonoise ratio (SNR) at the SURx given by
In (2), N_{0} represents the noise power spectral density and P (g_{1},g_{2},...,g_{ M }; h_{1}) is the power allocation policy for the SUTx corresponding to the joined CSI given as (g_{1},g_{2}, ..., g_{ M }; h_{1}). According to [3], the transmission power of the SUTx with respect to PURx_{ m }should be adjusted to be lower than an allowable level:
where {Q}_{\mathsf{\text{pk}}}^{m} is the peak interference power that the PURx_{ m }can tolerate without scarifying QoS. Furthermore, let us assume that the tolerable peak interference power is the same for all PURx, i.e. {Q}_{\mathsf{\text{pk}}}^{m}={Q}_{\mathsf{\text{pk}}} for m = 1, 2,..., M. In order to not cause harmful interference to any PURx in the primary system, the transmission power of the SUTx must then satisfy the peak interference power constraint given as
2.1.2. Delay constraint
As far as the transmission time of packets is concerned, this is clearly nondeterministic due to the fading channel. In the sequel, the transmission of a packet is considered as successful if the packet transmission time is less than a predefined threshold, t_{out}, referred to as timeout. Figure 2 shows an example of a timing diagram of packet transmission for pointtopoint communication between SUTx and SURx. Recall that the SUTx receives packets from higher layers which it will convert into bit streams at the lower layer prior to transmission over the fading channel. Once the SURx has received a sufficient number of bits and decoded the related packets successfully, it will respond with an acknowledgement (ACK) packet that is assumed to be errorfree and incurs negligible delay to the SUTx. This ACK indicates the SUTx that it can eliminate the corresponding packet at the head of the buffer and may continue with transmitting the subsequent packets. In the example shown in Figure 2, the first packet is transmitted unsuccessfully as the SUTx does not receive an ACK within t_{out}, i.e. T_{1} ≥ t_{out}. In this case, the SUTx considers the packet as dropped. In contrast, the second and third packet are transmitted successfully as their transmission times are less than the timeout t_{out}, i.e. T_{2}, T_{3} < t_{out}.
2.1.3. Queuing model for pointtopoint communications
The packets arriving at the SU are stored in a buffer and served in firstin firstout (FIFO) order. Assuming that the packet arrival follows a Poisson process with arrival rate λ, the considered pointtopoint scenario may be modeled as an M/G/1 queueing system [17–19] with service time given as general distribution and the system being equipped with a single server [20].
From (1), (2) and the peak interference power constraint (4), we can conclude that the packet transmission time depends on both the channel gain and the peak interference power constraint. Clearly, once the distribution of transmission time is determined, the average waiting time of packets at the SUTx can be calculated by applying the PollaczekKhinchin's equation [20, Eq.(8.34)] as follows
where E\left[W\right] is the total average waiting time of packets at the SUTx and E\left[{T}_{q}\right] is the average waiting time of packets in the buffer. It is noted that E\left[{T}_{q}\right] can be formulated as
where \rho =\lambda E\left[T\right] is referred to as channel utilization and E[T^{i}], i = 1,2 denotes the first and second moment of packet transmission time, respectively. Furthermore, the following result from queueing theory can be applied for the stability of transmission of the SU.
Stability condition [20]: Transmission of the SUTx is stable if and only if the average arrival rate λ is less than the average transmission rate μ, that is
where average transmission rate is defined by the inverse of the average transmission time as
2.2. Pointtomultipoint scenario
In this scenario, we consider a spectrum sharing system as shown in Figure 3 in which a secondary base station (SBS) transmits a common packet to a number N of SURx in its coverage range. This scenario is also known as mobile multicast network in which the base station transmits common information to multiple receivers over broadcast channels [21, 22].
2.2.1. Peak interference power constraint
In this spectrum sharing scenario, the power allocation problem becomes more complicated as the SBS must not only adjust its power to guarantee successful packet transmission to all SURx in the secondary system but must also limit the interference power caused to the active PURx in the primary system. Clearly, the transmission time of a common packet will vary among the different SURx_{ n }due to the involved i.i.d. Rayleigh fading channels. Similar to (1), the transmission time of a packet to an SURx_{ n }can be expressed as
and γ_{ n }is the SNR at the n th SURx_{ n }which can be formulated as
where h_{ n }is the channel gain from the SBS to the SURx_{ n }while the optimal transmission power P(g_{1},g_{2},...,g_{ M }; h_{1}, h_{2},..., h_{ N }) of the SBS is given with respect to the joined CSI denoted as (M + N)tuple (g_{1}, g_{2},..., g_{ M };h_{1},h_{2},..., h_{ N }). The transmission power policy of the SBS with respect to the PURx_{ m }should then satisfy the following condition:
Similar to the pointtopoint scenario, we assume {Q}_{\mathsf{\text{pk}}}^{m}={Q}_{\mathsf{\text{pk}}} which leads to the condition for the instantaneous transmission power of SBS as
2.2.2. Delay constraint
In the pointtomultipoint scenario, the SBS tries to broadcast common packets to all SURx in its coverage range. Each common packet has a timetolive which should be less than t_{out}. If an SURx receives a common packet, it feeds back an ACK to the SBS before t_{out}. This means that the SURx has received the common packet successfully. Otherwise, the SBS implies that the SURx has not received the transmitted packet. Figure 4 shows an example of a timing diagram where the SBS transmits common packets to two SURx. In particular, the SBS transmits the first packet successfully as both transmission times T_{1,1} and T_{2,1} corresponding to SURx_{1} and SURx_{2}, respectively, are less than the timeout t_{out}. It is noted that T_{1,1} may be different from T_{2,1} due to the different fading channel and spatial separation of SURx_{1} and SURx_{2}. In contrast, the second common packet is transmitted unsuccessfully to SURx_{2} as the SBS does not receive an ACK from SURx_{2} before timeout t_{out}.
Clearly, if the SBS receives ACKs from all SURx before t_{out}, it can be considered as the best channel condition. On the other hand, the SBS may not transmit the common packet successfully to all SURx due to the fading environment.
3. Performance analysis for pointtopoint communications
In this section, we derive closedform expressions for the PDF and CDF of packet transmission time as well as outage probability. Based on these results, we not only quantify the first and second moment of packet transmission time but also investigate the queueing theoretical characteristics of the considered spectrum sharing system.
3.1. PDF of packet transmission time
In this scenario, the SUTx wants to transmit with maximum transmission rate in order to reduce dropped packets due to timeout. On the other hand, the SUTx not only needs to adjust its transmission power in response to changes of the transmission environment but also guarantee the QoS of any PURx around.
Given perfect CSI, the maximum instantaneous transmission power of the SUTx in (4) can be expressed with equality as
By substituting (13) into (2), we can rewrite (1) as
It is easy to see that the packet transmission time, T, now turns out to be a function of multiple random variables, i.e. h_{1}, g_{ m }, m = 1, 2,..., M. Therefore, in order to investigate the delay performance, we need to derive the PDF of T in the sequel.
Let us start with the CDF of {g}_{0}=\underset{m}{\text{max}}\left\{{g}_{m}\right\} where g_{ m }is the channel gain. Because the channel coefficients undergo Rayleigh fading, the channel gain, g_{ m }, is a random variable distributed following an exponential distribution with unitmean, given by
Using order statistics, we can easily obtain the CDF and PDF of g_{0}, respectively, as follows:
For convenient derivation, let us denote Z = h_{1}/g_{0}. The PDF of Z can be obtained by applying the method presented in [23] as
On the other hand, the CDF of T can be formulated as
and the PDF of T can be derived by differentiating (19) with respect to x as
where G=\frac{{Q}_{\mathsf{\text{pk}}}}{{N}_{0}}1 is introduced for brevity. It is noted that (20) exactly leads to the PDF of [[11], Eq.(10)] for the peak interference power constraint of a single PURx by setting M = 1.
In the subsequent sections, the important result in (20) will be used to investigate the outage probability, the average transmission time and the average waiting time of packets.
3.2. Outage probability
Given the channel conditions and the peak interference power constraint, the outage probability P_{out} is defined as the probability that the packet transmission time T exceeds the interval t_{out}:
From (19), we can easily obtain the closedform expression for the outage probability as
On the other hand, let T_{ suc }denote the transmission time of a packet given that it is not dropped, i.e.,
Accordingly, applying Bayes' rule, the probability that the event T_{ suc }takes place can be expressed as
Based on (24), we can express the CDF of T_{ suc }as follows:
and {F}_{{T}_{suc}}\left(x\right)=0 for x ≥ t_{out}. Differentiating both sides of (25) with respect to x, the PDF of the packet transmission time without being timed out can be presented as
and {f}_{{T}_{suc}}\left(x\right)=0 for x ≥ t_{out}. Substituting (20) into (26), the PDF of packet transmission time without being timed out can be obtained as
while {f}_{{T}_{suc}}\left(x\right)=0 for x ≥ t_{out}. In the following, the PDF {f}_{{T}_{suc}}\left(x\right) given in (27) will be used to derive the moment of packet transmission time.
3.3. Moment of packet transmission time
Let us recall that a transmitted packet can be received successfully or not due to the fading channel. Therefore, examining average transmission time shall consider both packet transmission time without and with timeout.
Let us start with the average transmission time of packet without timeout as follows
By setting t=\text{exp}\left(\stackrel{\u0303}{\mathsf{\text{B}}}/x\right) and applying an exchange of variables in the integral of (28), we finally obtain the first moment of packet transmission time without timeout as
where
Similarly, we can calculate the second moment of packet transmission time without timeout as follows:
Using similar exchange of variables as above for (31), we obtain the second moment of T_{ suc }as
where
Finally, by applying the law of total expectation, the first and the second moment of packet transmission time (including dropped packets) can be given by
where P_{ out }is given by (22) and \mathbb{E}\left[{T}_{suc}^{i}\right], i = 1, 2 can be calculated by (29) and (32), respectively
3.4. Queuing theoretical characteristics
Firstly, the expression for the average waiting time of packets in the buffer of SUTx can be obtained by substituting (34) with respect to i = 1, 2 into (5) and (6) as
Secondly, the transmission of an SU is stable if and only if the average arrival rate is less than the average transmission rate. Thus, we can make a statement about the stable transmission condition as follows:
Remark: Given the channel state information and the peak interference power constraint of M PUs, the transmission of the SU is stable if and only if the average arrival rate of packet, λ, satisfies the condition
The inequality (36) is derived by substituting (34) for i = 1 into (7).
Finally, by using the Little theorem [20, Eq. (8.2)], the average number of packets waiting in the buffer of the SUTx can be formulated as
where E\left[W\right] is given by (35).
4. Performance analysis for pointtomultipoint communications
In this section, we consider pointtomultipoint communications, in which both SU and PU links undergo Rayleigh fading. We first derive the exact closedform expression for the outage probability of the secondary system, and then we consider the probability for the special case that the SBS can transmit the common packet successfully to all SURx in its coverage range.
4.1. Outage probability
In the pointtomultipoint scenario, the SBS transmits common packets to SURx in its coverage. Some SURx may not receive the common packets successfully due to fading environment. In order to analyze the performance of this scenario, we will calculate the probability that k out of the total of N SURx cannot receive the common packets successfully, known as outage probability.
Similar to pointtopoint communications, the event that the SURx_{ n }cannot receive a packet successfully is formulated as T_{ n }≥ t_{out} where T_{ n }is an i.i.d. random variable distributed following the CDF given by
(19). Therefore, the outage probability in this case can be formulated as
where (38) is obtained by using the binomial theorem and the help of (19).
4.2. Best channel condition
For pointtomultipoint communications, the SBS may transmit common packets successfully to all SURx if the channel condition is ideal. This is known as the best channel condition which can be expressed as the longest transmission time for one common packet to be less than t_{out}, i.e., \left\{\underset{n}{\text{max}}\left\{{T}_{n}\right\}<{t}_{\mathsf{\text{out}}}\right\}.
Therefore, the probability that the SBS transmits the common packet to N SURx with the best channel condition can be given as
where (39) can be calculated with the help of (19).
5. Numerical results
We first provide numerical results for pointtopoint communications. In particular, we study the impact of the peak interference power constraint and the number of PUs on the outage probability, average transmission time and queuing theoretical characteristics of the secondary system. We then discuss results about the outage probability and the probability that the SBS can transmit the common packet successfully under the best channel condition for pointtomultipoint communications. The system parameters are selected following [16] as follows:

System bandwidth: B = 1 MHz

Packet size: L = 4096 bits (512 bytes)

Timeout: t_{out} = 10 ms

Noise power spectral density: N_{0} = 1 W/Hz
5.1. Pointtopoint communications
In the sequel, we focus on the impact of the peak interference power constraint and the number of PUs on the performance of an SU.
5.1.1. Outage probability
Figure 5 shows the outage probability as a function of the number of PUs, M, for given peak interference power of Q_{pk} = 5, 10, 15 dB. As can clearly be observed from the figure, the analysis matches very well with the simulation results in all cases of Q_{pk}. The outage probability increases fast with M if the peak interference power is set to a low value such as Q_{pk} = 5 dB. On the other hand, the outage probability increases slowly when the peak interference power is high, Q_{pk} = 10, 15 dB and specifically saturates fast for Q_{pk} = 15 dB. These results are thought to be due to the fact that an SUTx can transmit with relative high transmission power and hence increased transmission rate when the peak interference power Q_{pk} is large. As a result, the transmission time for the packets can be kept low which in turn reduces the outage probability. On the other hand, for a fixed value of the peak interference power, Q_{pk}, the more PUs operate actively in the primary network, the more constraints are put on the transmission power of an SUTx resulting in an increased outage probability (see also (3) and (22)).
5.1.2. Average transmission time
Figure 6 depicts the average transmission time of packets at the SUTx as a function of the peak interference power, Q_{pk}, for the number of PUs given as M = 1, 4, 7, 10. Again, analytical and simulation results are in excellent agreement. It can be seen from the figure that the average transmission time for the packets from the SUTx decreases as the peak interference power increases. Typically, the average transmission time reduces very fast in the high regime of the peak interference power of about Q_{ pk }≥ 16.5 dB. This is due to the same reason as discussed above for the outage probability, i.e., an increase of the allowed peak interference power induces a higher transmission rate and hence a decrease of transmission time of packets from the SUTx. It should also be noted that the results for the average transmission time matches exactly with our previous results reported in [[11], Figure 3] where we considered the special case of only a single PU being present, i.e., M = 1. The results shown in Figure 7 enable us to study the impact of the number of PUs on the average transmission time of packets at the SUTx. Apparently, the number of PUs has a significant influence on the average transmission time at low values of the peak interference power, say Q_{ pk }= 5 dB, causing it to rapidly increase with M. In contrast, for higher peak interference power such as Q_{ pk }= 10 dB, an increase of the number of PUs increases the average transmission time only slowly and has almost now impact for Q_{ pk }= 15 dB once M > 4. These results are consistent with the behavior observed for the outage probability.
5.1.3. Queuing theoretical results
In the following, we examine the queuing characteristics of the SUTx under the peak interference power constraint (4) with related results shown in Figures 8 and 9. Specifically, we have set the number of PUs to M = 1, 3, 5 and observe the average waiting time and channel utilization for two values of average arrival rate given as λ = 10,50 packets/s.
Figure 8 illustrates that the average waiting time increases as the number of PUs and arrival rate increase. Apparently, these results are in line with the behavior observed for the outage probability and average transmission time above and may be explained as follows. At a fixed value of Q_{ pk }, an increasing number of PUs leads to an increase of average transmission time due to the reasons explained above and hence an increase of average waiting time. Similarly, when the arrival rate increases, the number of packets to be stored in the buffer increases as well and await transmission. On the other hand, as the transmission rate is restricted due to the peak interference power constraint, the packets have to stay longer in the buffer before they are transmitted.
Figure 9 provides insights into the stable transmission condition as a function of the peak interference power, Q_{pk}, with the number of PUs given as M = 1,3,5 and arrival rates being λ = 10,50 packets/s. The results show that for a given value of the number PUs, M, and fixed value of the peak interference power Q_{pk}, the channel utilization \rho =\lambda E\left[T\right] for arrival rate λ = 10 packets/s outperforms the result for λ = 50 packets/s. In other words, the significant lower channel utilization for λ = 10 packets/s compared to λ = 50 packets/s provides a more stable transmission with respect to the service rate μ in terms of the stable condition formulated in (36). Clearly, the service rate μ of an SUTx is restricted for a fixed value of the peak interference power Q_{ pk }while a higher arrival rate causes more packets to be processed by the buffer expecting timely transmission. Accordingly, the ratio of arrival rate to service rate, relating to the stable transmission condition λ/μ < 1, has to be carefully considered in order to not exceed the capacity of the secondary system. It can also be observed from the figure that the stable transmission condition can be easily satisfied in the high regime of the peak interference power, say Q_{pk} ≥ 16.5 dB, as the channel utilization is sufficiently low.
5.2. Pointtomultipoint communications
We now focus on the impact of the peak interference power on the outage probability of the pointtomultipoint communications as shown in Figure 10. In particular, we set the number of SUs and PUs as N = M = 5 and plot the outage probability as a function of the peak interference power, Q_{pk}, under the condition that k = 1, 2,3,4,5 out of the total of N = 5 SURx cannot receive the common packets successfully. Clearly, we can deduce from the results that the probability of exactly k out of the N = 5 SURx not being able to receive the common packet successfully decreases as k increases. In addition, the outage performance improves as the peak interference power increases as expected.
Figure 11 presents the probability that all SURx can receive the common packets successfully as a function of the peak interference power for the number of PUs fixed to M = 8 and the number of SUs given as N = 3,5,8. This scenario relates to the best channel condition as outlined in Section 4. It can be seen from the figure that the probability of the SBS transmitting the common packets successfully to all SUs is quite high (above 0.8) in the high regime of the peak interference power, Q_{pk} ≥ 19 dB. The figure also indicates that for number of PUs fixed at M = 8, the probability of successful transmission decreases with an increase of the number of SURx, N = 3, 5, 8. Similar to pointtopoint communications, an increasing number of SUs leads to an increase of the peak interference power constraint at the SBS. Thus, the time it takes to transmit the common packet may be longer while the probability of successful transmission decrease for the best channel condition.
6. Conclusions
In this article, we have analyzed the delay performance of spectrum sharing systems for pointtopoint and pointtomultipoint communications. In particular, we have assumed that each packet has a delay threshold, transmission channels undergo Rayleigh fading, SUs posses perfect CSIs and ACKs are transmitted without error and delay. Closedform expressions for the outage probability and average transmission time for pointtopoint communications are obtained. In addition, we have utilized the M/G/1 queuing model to analyze the queueing characteristics of such systems including the average transmission time, the packet waiting time and the stable transmission condition of an SU. Based on the analytical framework established for pointtopoint communications, we have also derived closedform expressions for the outage probability and the successful transmission probability for pointtomultipoint communications under best channel conditions. Numerical results for representative scenarios have been provided to quantify the impact of an increase of the number of SUs and PUs on system performance. In particular, it has been shown that an increasing number of SUs or PUs significantly increases packet delay if the peak interference power is constraint by the PUs to be low while small performance degradation is observed if the PUs tolerate sufficiently large peak interference power. Accordingly, the developed analytical framework for pointtopoint and pointtomultipoint communications in spectral sharing systems may serve to efficiently examine system performance. For example, it may be used to deduce a tradeoff between QoS requirements of the secondary system and interference constraints posed by the primary system.
References
Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies, Federal Communications Commission (FCC), Technical Report 03108 2005.
Mitola J, Maguire GQ: Cognitive radio: Making software radios more personal. IEEE Personal Commun 1999, 6(4):1318. 10.1109/98.788210
Ghasemi A, Sousa ES: Fundamental limits of spectrumsharing in fading environments. IEEE Trans Wirel Commun 2007, 6(2):649658.
Musavian L, Aissa S: Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Trans Commun 2009, 57(11):34723480.
Suraweera HA, Smith PJ, Shafi M: Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Technol 2010, 59(2):18111822.
Dmochowski PA, Suraweera HA, Smith PJ, Shafi M: Impact of channel knowledge on cognitive radio system capacity. In Proc IEEE Vehicular Technology Conference. Ottawa, Canada; 2010:15.
Musavian L, Aissa S: Capacity and power allocation for spectrumsharing communications in fading channels. IEEE Trans Wirel Commun 2009, 8(1):148156.
Wu D, Negi R: Effective capacity: A wireless link model for support of quality of service. IEEE Trans Wirel Commun 2003, 2(4):630643.
Musavian L, Aissa S: Effective capacity of delayconstrained cognitive radio in Nakagami fading channels. IEEE Trans Wirel Commun 2010, 9(3):10541062.
Musavian L, Aissa S: Crosslayer analysis of cognitive radio relay networks under quality of service constraints. In Proc IEEE Vehicular Technology Conference. Barcelona, Spain; 2009:15.
Tran H, Duong TQ, Zepernick HJ: Queuing analysis for cognitive radio networks under peak interference power constraint. In Proc IEEE International Symposium on Wireless and Pervasive Computing. Hong Kong, China; 2011:15.
Tran H, Duong TQ, Zepernick HJ: Performance of a spectrum sharing system over Nakagamim fading channels. In Proc International Conference on Signal Processing and Communication Systems. Gold Coast, Australia; 2010:16.
Mangold S, Jarosch A, Monney C: Operator assisted cognitive radio and dynamic spectrum assignment with dual beacons  detailed evaluation. In Proc International Conference on Communication System Software and Middleware. New Delhi, India; 2006:16.
Ban TW, Choi W, Jung BC, Sung DK: Multiuser diversity in a spectrum sharing system. IEEE Trans Wirel Commun 2009, 8(1):102106.
Kang X, Liang YC, Nallanathan A, Garg H, Zhang R: Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Trans Wirel Commun 2009, 8(2):940950.
Mehta NB, Sharma V, Bansal G: Performance analysis of a cooperative system with rateless codes and buffered relays. IEEE Transactions on Wirel Commun 2011, 10(4):10691081.
Song W, Cheng Y, Zhuang W: Improving voice and data services in cellular/WLAN integrated networks by admission control. IEEE Trans Wirel Commun 2007, 6(11):40254037.
Burdin J, Landry R: Delay analysis of wireless Nakagami fading channels. In Proc IEEE Global Communications Conference. New Orleans, USA; 2008:15.
Ahmed N, Khojestapour M, Baraniuk R: Delaylimited throughput maximization for fading channels using rate and power control. In Proc IEEE Global Communications Conference. Dallas, USA; 2004:34593463.
Ross SM: Introduction to Probability Models. 9th edition. Elsevier; 2007.
Sidiropoulos ND, Davidson TN, Luo ZQ: Transmit beamforming for physicallayer multicasting. IEEE Trans Signal Process 2006, 54(6):22392251.
Jindal N, Luo ZQ: Capacity limits of multiple antenna multicast. Proc IEEE International Symposium on Information Theory 2006, 18411845.
Suraweera HA, Gao J, Smith PJ, Shafi M, Faulkner M: Channel capacity limits of cognitive radio in asymmetric fading environments. In Proc IEEE International Conference on Communications. Beijing, China; 2008:40484053.
Acknowledgements
Part of this study was presented at the IEEE International Symposium on Wireless and Pervasive Computing, Hong Kong, China, February 2011.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Tran, H., Duong, T.Q. & Zepernick, HJ. Delay performance of cognitive radio networks for pointtopoint and pointtomultipoint communications. J Wireless Com Network 2012, 9 (2012). https://doi.org/10.1186/1687149920129
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687149920129
Keywords
 cognitive radio networks
 spectrum sharing
 outage probability
 packet transmission time
 queueing analysis