Gfeller F, Bapst U: Wireless in-house data communication via diffuse infrared radiation. Proc IEEE 1979, 67(11):1474-1486.
Article
Google Scholar
Infrared Data Association (IrDA)[http://www.irda.org]
Visible Light Communications Consortium[http://www.vlcc.net]
Chan VWS: Optical satellite networks. IEEE/OSA J Lightw Technol 2003, 21(11):2811-2827. 10.1109/JLT.2003.819534
Article
Google Scholar
IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 1997.
IEEE 802.15 Working Group for WPAN[http://www.ieee802.org/15/]
IrDA: Advanced Infrared (AIr) MAC Draft Protocol Specification--Version 1.0, Infrared Data Association. 1999.
Google Scholar
IrDA: Advanced Infrared Logical Link Control (AIrLC) Specification--Version 0.1, Infrared Data Association. 1999.
Google Scholar
IrDA: Advanced Infrared Physical Layer Specification (AIr-PHY) --Version 1.0, Infrared Data Association. 1998.
Google Scholar
IrDA: Point and Shoot Profile--Version 1.1, Infrared Data Association. 2000.
Google Scholar
IrDA: Physical Layer Specification--Version 1.4, Infrared Data Association. 2001.
Google Scholar
IrDA: Serial Infrared Physical Layer Specification--Giga-IR Addition Version 1.0, Infrared Data Association. 2009.
Google Scholar
IEC 60825-1, Safety of Laser Products--Part 1: equipment classification, requirements, and user's guide, edition 1.2 International Electrotechnical Commission 2001.
IrDA: Serial Infrared Link Access Protocol (IrLAP) --Version 1.1, Infrared Data Association. 1996.
Google Scholar
IrDA: Link Management Protocol (IrLMP)--Version 1.1, Infrared Data Association. 1996.
Google Scholar
IrDA: Tiny TP: a flow-control mechanism for use with IrLMP--Version 1.1, Infrared Data Association. 1996.
Google Scholar
IrDA: Object Exchange Protocol (OBEX™)--Version 1.5, Infrared Data Association. 2009.
Google Scholar
IrDA: Link Access Protocol Specification for Giga-IR Addition--Version 1.0, Infrared Data Association. 2009.
Google Scholar
IrDA: IrLAP Fast Connect (Application Note)--Version 1.0, Infrared Data Association. 2002.
Google Scholar
IrDA: Minimal IrDA Protocol Implementation (IrDA Lite)--Version 1.0, Infrared Data Association. 1996.
Google Scholar
IrDA: IrSimple (Infrared Simple) Profile--Version 1.01, Infrared Data Association. 2007.
Google Scholar
IrDA: Serial Infrared Sequence Management Protocol for IrSimple--Version 1.0, Infrared Data Association. 2005.
Google Scholar
IrDA: Infrared Financial Messaging (IrFM™) Point and Pay Profile--Version 1.0, Infrared Data Association. 2002.
Google Scholar
IrDA: 'IrCOMM': Serial and Parallel Port Emulation over IR (Wire Replacement)--Version 1.0, Infrared Data Association. 1995.
Google Scholar
IrDA: Infrared Universal Bus Specification--Version 0.11, Infrared Data Association. 2010.
Google Scholar
Boucouvalas AC: Indoor ambient light noise and its effect on wireless optical links. IEE Proc Optoelectron 1996, 143(6):334-338. 10.1049/ip-opt:19960881
Article
Google Scholar
Kahn J, Barry J: Wireless infrared communications. Proc IEEE 1997, 85(2):265-298. 10.1109/5.554222
Article
Google Scholar
Kahn JM, Krause WJ, Carruthers JB: Experimental characterization of non-directed indoor infrared channels. IEEE Trans Commun 1995, 43(234):1613-1623.
Article
Google Scholar
Pérez-Jiménez R, Rabadán JA, López-Hernández FJ: Filtered modulation schemes for short distance infrared wireless communications. IEEE Trans Consumer Electron 2000, 46(2):275-282. 10.1109/30.846658
Article
Google Scholar
Valadas RT, Tavares AR, de Oliveira Duarte AM, Moreira AC, Lomba CT: The infrared physical layer of the IEEE 802.11 Standard for wireless local area networks. IEEE Commun Mag 1998, 36(12):107-112. 10.1109/35.735887
Article
Google Scholar
Shiu D, Kahn JM: Differential pulse position modulation for power-efficient optical communication. IEEE Trans Commun 1999, 47(8):1201-1210. 10.1109/26.780456
Article
Google Scholar
Ghassemlooy Z, Hayes AR: Digital pulse interval modulation for IR communication systems--a review. Int J Commun Sys 2000, 13(7-8):519-536. 10.1002/1099-1131(200011/12)13:7/8<519::AID-DAC454>3.0.CO;2-5
Article
MATH
Google Scholar
Hirt W, Hassner M, Heise N: IrDA-VFIr (16 Mb/s): modulation code and system design. IEEE Personal Commun 2001, 8(1):58-71. 10.1109/98.904900
Article
Google Scholar
Widmer AX, Franaszek PA: A DC-balanced, partitioned-block, 8B/10B transmission code. IBM J Res Dev 1983, 27(5):440-451.
Article
Google Scholar
Street AM, Samaras K, O'Brien DC, Edwards DJ: Closed form expressions for baseline wander effects in wireless IR applications. IEE Electron Lett 1997, 33(12):1060-1062. 10.1049/el:19970739
Article
Google Scholar
Ghassemlooy Z: Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation. IET Commun 2008, 2(1):53-60. 10.1049/iet-com:20050552
Article
Google Scholar
Carruthers JB: JM Kahn, Multiple-subcarrier modulation for non-directed wireless infrared communication. IEEE J Sel Areas Commun 1996, 14(3):538-546. 10.1109/49.490239
Article
Google Scholar
You R, Kahn JM: Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals. IEEE Trans Commun 2001, 49(12):2164-2171. 10.1109/26.974263
Article
MATH
Google Scholar
Gonzalez O, Perez-Jimenez R, Rodriguez S, Rabadan J, Ayala A: OFDM over indoor wireless optical channel. IEE Proc Optoelectron 2005, 152(4):199-204. 10.1049/ip-opt:20045065
Article
Google Scholar
Mesleh R, Elgala H, Haas H: On the performance of different OFDM based optical wireless communication systems. OSA J Opt Commun Netw 2011, 3: 620-628.
Article
Google Scholar
Armstrong J: OFDM for optical communications. IEEE/OSA J Lightw Technol 2009, 27(3):189-2041.
Article
Google Scholar
Chatzimisios P, Boucouvalas AC: Packet delay analysis of the advanced infrared (AIr) CSMA/CA MAC protocol in optical wireless LANs. Int J Commun Syst 2005, 18(3):307-331. 10.1002/dac.705
Article
Google Scholar
Vitsas V, Boucouvalas AC: Performance analysis of the advanced infrared (AIr) CSMA/CA MAC protocol for wireless LANs. Wirel Netw 2003, 9(5):495-507. 10.1023/A:1024692217327
Article
Google Scholar
Barker P, Vitsas V, Boucouvalas AC: Simulation analysis of advanced infrared (Alr) MAC wireless communications protocol. IEE Proc Circ Dev Syst 2002, 149(3):193-197. 10.1049/ip-cds:20020444
Article
Google Scholar
Bianchi G: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 2000, 18(3):535-547. 10.1109/49.840210
Article
Google Scholar
Crow BP, Widjaja I, Kim LG, Sakai PT: IEEE 802.11 wireless local area networks. IEEE Commun Mag 1997, 35(9):116-126. 10.1109/35.620533
Article
Google Scholar
Huang P, Chatzimisios P, Boucouvalas A: Optimizing IrDA throughput by including processing time with physical layer consideration. OSA J Opt Netw 2005, 4: 323-331. 10.1364/JON.4.000323
Article
Google Scholar
Vitsas V, Boucouvalas AC: Optimization of IrDA IrLAP link access protocol. IEEE Trans Wirel Commun 2003, 2(5):926-938. 10.1109/TWC.2003.816776
Article
Google Scholar
Boucouvalas AC, Huang Pi: Modelling and optimising TinyTP over IrDA stacks. EURASIP J Wirel Commun Netw 2005, 2005(1):45-56.
MATH
Google Scholar
Boucouvalas AC, Huang Pi: OBEX over IrDA: performance analysis and optimization by considering multiple applications. IEEE/ACM Trans Netw 2006, 14(6):1292-1301.
Article
Google Scholar
Deccio CT, Ekstrom J, Partridge DR, Tew KB, Knutson CD: A study of the suitability of IrOBEX for high-speed exchange of large data objects. In Proc IEEE GLOBECOM. Volume 5. San Francisco; 2003:2664-2668.
Google Scholar
Shah AM, Ara SS, Kitazumi G, Matsumoto M: IrSimple Modeling and Performance Evaluation for High-Speed Infrared Communications. In Proc IEEE GLOBECOM. San Francisco; 2006:1-6.
Google Scholar
IrDA: Burst Data Protocol (IrBurst)--Version 1.0, Infrared Data Association. 2004.
Google Scholar
Alam MS, Shawkat SA, Gontaro K, Mitsuji M: IrBurst modeling and performance evaluation for large data block exchange over high-speed IrDA links. IEICE Trans Commun 2008, 91(1):274-285.
Article
Google Scholar
Huang P, Boucouvalas A: IrBurst modelling and performance analysis in the presence of transmission errors. Wirel Personal Commun 2007, 41(1):111-125. 10.1007/s11277-006-9131-9
Article
Google Scholar
Huang P, Boucouvalas A: Future personal "e-payment": IRFM. IEEE Wirel Commun 2006, 13(1):60-66. 10.1109/MWC.2006.1593526
Article
Google Scholar
Chu T-S, Gans M: High speed infrared local wireless communication. IEEE Commun Mag 1987, 25(8):4-10.
Article
Google Scholar
Heatley DJT, Wisely DR, Neild I, Cochrane P: Optical wireless: the story so far. IEEE Commun Mag 1998, 36(12):72-74. 79-82 10.1109/35.735881
Article
Google Scholar
Pang G, Kwan T, Liu H, Chan C-H: LED wireless. IEEE Ind Appl Mag 2002, 8(1):21-28. 10.1109/2943.974354
Article
Google Scholar
Hranilovic S: Wireless Optical Communication Systems. Springer, New York, NY; 2004.
Google Scholar
Barry JR, Kahn JM: Link design for nondirected wireless infrared communications. OSA Appl Opt 1995, 34: 3764-3776.
Article
Google Scholar
Wang K, Nirmalathas A, Lim C, Skafidas E: 4 × 12.5 Gb/s WDM optical wireless communication system for indoor applications. IEEE/OSA J Lightw Technol 2011, 29(13):1988-1996.
Article
Google Scholar
Pakravan MR, Simova E, Kavehrad M: Holographic diffusers for indoor infrared communication systems. Int J Wirel Inf Netw 1997, 4(4):259-274. 10.1023/A:1018876326494
Article
Google Scholar
Elgala H, Mesleh R, Haas H: Indoor broadcasting via white LEDs and OFDM. IEEE Trans Consumer Electron 2009, 55(3):1127-1134.
Article
Google Scholar
Jungnickel V, Forck A, Haustein T, Kruger U, Pohl V, von Helmolt C: Electronic tracking for wireless infrared communications. IEEE Trans Wirel Commun 2003, 2(5):989-999. 10.1109/TWC.2003.817419
Article
Google Scholar
Plant DV, Kirk AG: Optical interconnects at the chip and board level: challenges and solutions. Proc IEEE 2000, 88(6):806-818. 10.1109/5.867694
Article
Google Scholar
Kim G, Han X, Chen R: An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements. IEEE/OSA J Lightw Technol 2000, 18(11):1477-1486. 10.1109/50.896207
Article
Google Scholar
Bevan MG, Darrin MAG, Walts SC, Schneider W, Mills CS, Conde RF: Free-space optical data bus for spacecraft. In Proceedings of the 3rd annual Earth Science Technology Conference. Maryland, USA; 2003.
Google Scholar
O'Brien DC, Faulkner GE, Zyambo EB, Jim K, Edwards DJ, Stavrinou P, Parry G, Bellon J, Sibley MJ, Lalithambika VA, Joyner VM, Samsudin RJ, Holburn DM, Mears RJ: Integrated transceivers for optical wireless communications. IEEE J Sel Topics Quantum Electron 2005, 11(1):173-183.
Article
Google Scholar
Miller D: Device requirements for optical interconnects to silicon chips. Proc IEEE 2009, 97(7):1166-1185.
Article
Google Scholar
Shelby RM, Hoffnagle JA, Burr GW, Jefferson CM, Bernal M-P, Coufal H, Grygier RK, Gunther H, Macfarlane RM, Sincerbox GT: Pixel-matched holographic data storage with megabit pages. OSA Opt Lett 1997, 22(19):1509-1511.
Article
Google Scholar
Burr GW, Ashley J, Coufal H, Grygier RK, Hoffnagle JA, Jefferson CM, Marcus B: Modulation coding for pixel-matched holographic data storage. OSA Opt Lett 1997, 22(9):639-641.
Article
Google Scholar
Bisaillon E, Brosseau DF, Yamamoto T, Mony M, Bernier E, Goodwill D, Plant DV, Kirk AG: Free-space optical link with spatial redundancy for misalignment tolerance. IEEE Photon Technol Lett 2002, 14(2):242-244.
Article
Google Scholar
Hranilovic S, Kschischang FR: Short-range wireless optical communication using pixelated transmitters and imaging receivers. In Proceedings of the IEEE International Conference on Communications. Volume 2. Paris, France; 2004:891-895.
Google Scholar
Hranilovic S, Kschischang FR: A pixelated MIMO wireless optical communication system. IEEE J Sel Topics Quantum Electron 2006, 12(4):859-874.
Article
Google Scholar
Mesleh R, Elgala H, Haas H: Optical spatial modulation. OSA J Opt Commun Netw 2011, 3(3):234-244.
Article
Google Scholar
Takase D, Ohtsuki T: Spatial multiplexing in optical wireless MIMO communications over indoor environment. IEICE Trans Commun 2006, E89-B(4):1364-1370. 10.1093/ietcom/e89-b.4.1364
Article
Google Scholar
Villan R, Voloshynovskiy S, Koval O, Pun T: Multilevel 2-D bar codes: toward high-capacity storage modules for multimedia security and management. IEEE Trans Inf Foren Sec 2006, 1(4):405-420.
Article
Google Scholar
Mohamed MDA, Hranilovic S: Two-dimensional binary halftoned optical intensity channels. IET Commun 2008, 2(1):11-17. 10.1049/iet-com:20060385
Article
Google Scholar
Siegel PH: Information-theoretic limits of two-dimensional optical recording channels. In Proceedings of the IEEE Optical Data Storage Topical Meeting. Montreal, QC, Canada; 2006:165-167.
Google Scholar
Huang L, Mathew G, Chong TC: Channel modeling and target design for two-dimensional optical storage systems. IEEE Trans Mag 2005, 41(8):2414-2424.
Article
Google Scholar
Joseph J, Waldman DA: Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image. Appl Opt 2006, 45: 6374-6380. 10.1364/AO.45.006374
Article
Google Scholar
Pu A, Psaltis D: High-density recording in photopolymer-based holographic three-dimensional disks. OSA Appl Opt 1996, 35(14):2389-2398.
Article
Google Scholar
Takase D, Ohtsuki T: Optical wireless MIMO communications (OMIMO). In IEEE Global Telecom Conf. Volume 2. Dallas; 2004:928-932.
Google Scholar
Faucher J, Venditti MB, Plant DV: Application of parallel forward-error correction in two-dimensional optical-data links. IEEE/OSA J Lightw Technol 2003, 21(2):466-475. 10.1109/JLT.2003.808762
Article
Google Scholar
Ohbuchi E, Hanaizumi H, Hock LA: Barcode readers using the camera device in mobile phones. In Int Conference on Cyberworlds. Tokyo, Japan; 2004:260-265.
Google Scholar
Kahn JM, Barry JR, Audeh MD, Carruthers JB, Krause WJ, Marsh GW: Non-directed infrared links for high-capacity wireless LANs. IEEE Personal Commun 1994, 1(2):12-25.
Article
Google Scholar
Kotzin M, van den Heuvel A: A duplex infra-red system for inbuilding communications. In Proceedings of the 36th IEEE Vehicular Technology Conference. Volume 36. Dallas, Texas; 1986:179-185.
Google Scholar
Barry JR, Kahn JM, Krause WJ, Lee EA, Messerschmitt DG: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J Sel Areas Commun 1993, 11(3):367-379. 10.1109/49.219552
Article
Google Scholar
Alqudah YA, Kavehrad M: MIMO characterization of indoor wireless optical link using a diffuse-transmission configuration. IEEE Trans Commun 2003, 51(9):1554-1560. 10.1109/TCOMM.2003.816945
Article
Google Scholar
Hashemi H, Yun G, Kavehrad M, Behbahani F, Galko PA: Indoor propagation measurements at infrared frequencies for wireless local area networks applications. IEEE Trans Veh Technol 1994, 43(3):562-576. 10.1109/25.312790
Article
Google Scholar
Pakravan MR, Kavehrad M: Indoor wireless infrared channel characterization by measurements. IEEE Trans Veh Technol 2001, 50(4):1053-1073. 10.1109/25.938580
Article
Google Scholar
Carruthers JB, Kahn JM: Modeling of nondirected wireless infrared channels. IEEE Trans Commun 1997, 45(10):1260-1268. 10.1109/26.634690
Article
Google Scholar
Jungnickel V, Pohl V, Nonnig S, von Helmolt C: A physical model of the wireless infrared communication channel. IEEE J Sel Areas Commun 2002, 20(3):631-640. 10.1109/49.995522
Article
Google Scholar
Lee H-S: A photon modeling method for the characterization of indoor optical wireless communication. Prog Electromagn Res PIER 2009, 92: 121-136.
Article
Google Scholar
Lopez-Hernandez FJ, Perez-Jimenez R, Santamarıa A: Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels. Opt Eng 2000, 39(10):2775-2780. 10.1117/1.1287397
Article
Google Scholar
Gonzalez O, Rodriguez S, Perez-Jimenez R, Mendoza BR, Ayala A: Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm. IEEE Trans Commun 2005, 53(1):124-130. 10.1109/TCOMM.2004.840625
Article
Google Scholar
González O, Rodríguez S, Pérez-Jiménez R, Mendoza BR, Ayala A: Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels. OSA Opt Express 2011, 19: 1997-2005.
Article
Google Scholar
Cocheril Y, Vauzelle R: A new ray-tracing based wave propagation model including rough surfaces scattering. Prog Electromagn Res PIER 2007, 75: 357-381.
Article
Google Scholar
Audeh MD, Kahn JM, Barry JR: Performance of pulse position modulation on measured non-directed indoor infrared channels. IEEE Trans Commun 1996, 44(6):654-659. 10.1109/26.506380
Article
Google Scholar
Audeh MD, Kahn JM, Barry JR: Decision-feedback equalization of pulse-position modulation on measured nondirected indoor infrared channels. IEEE Trans Commun 1999, 47(4):500-503. 10.1109/26.764921
Article
Google Scholar
Lee DC, Kahn JM, Audeh MD: Trellis-coded pulse position modulation for indoor wireless infrared communications. IEEE Trans Commun 1997, 45(9):1080-1087. 10.1109/26.623072
Article
Google Scholar
Lee DC, Kahn JM: Coding and equalization for PPM on wireless infrared channels. IEEE Trans Commun 1999, 47(2):255-260. 10.1109/26.752131
Article
Google Scholar
Gfeller F, Hirt W: Advanced infrared (AIr): physical layer for reliable transmission and medium access. In Proceedings of the International Zurich Seminar on Broadband Communications. Zurich, Switzerland; 2000:77-84.
Google Scholar
Lee D, Kahn J: Experimental 25-Mb/s wireless infrared link using 4-PPM with scalar decision-feedback equalization. In Proceedings of the IEEE International Conference on Communications. Volume 1. Atlanta, GA, USA; 1998:26-30.
Google Scholar
Marsh GW, Kahn JM: 50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization. IEEE Photon Technol Lett 1994, 6(10):1268-1270.
Article
Google Scholar
Marsh GW, Kahn JM: Performance evaluation of experimental 50-Mb/s diffuse infrared wireless link using on-off keying with decision-feedback equalization. IEEE Trans Commun 1996, 44(11):1496-1504. 10.1109/26.544466
Article
Google Scholar
Yun G, Kavehrad M: Indoor infrared wireless communications using spot diffusing and fly-eye receivers. Can J Electron Comput E 1993, 18(4):151-157.
Article
Google Scholar
Alsaadi FE, Elmirghani JMH: Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers. OSA J Opt Commun Netw 2011, 3: 27-39.
Article
Google Scholar
Alsaadi FE, Elmirghani JMH: High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers. IEEE/OSA J Lightw Technol 2010, 28(16):2191-2206.
Article
Google Scholar
Jivkova ST, Hristov BA, Kavehrad M: Power-efficient multispot-diffuse multiple-input-multiple-output approach to broad-band optical wireless communications. IEEE Trans Veh Technol 2004, 53(3):882-889. 10.1109/TVT.2004.825779
Article
Google Scholar
Jivkova ST, Kavehrad M: Multispot diffusing configuration for wireless infrared access. IEEE Trans Commun 2000, 48(6):970-978. 10.1109/26.848558
Article
Google Scholar
Jivkova ST, Kavehrad M: Holographic optical receiver front end for wireless infrared indoor communications. OSA Appl Opt 2001, 40: 2828-2835.
Article
Google Scholar
Kahn JM, You R, Djahani P, Weisbin AG, Teik BK, Tang A: Imaging diversity receivers for high-speed infrared wireless communication. IEEE Commun Mag Vol 1998, 36: 88-94.
Article
Google Scholar
Carruthers J, Kahn JM: Angle diversity for nondirected wireless infrared communication. IEEE Trans Commun 2000, 48(6):960-969. 10.1109/26.848557
Article
Google Scholar
Jivkova S, Kavehrad M: Receiver designs and channel characterization for multi-spot high-bit-rate wireless infrared communications. IEEE Trans Commun 2001, 49(12):2145-2153. 10.1109/26.974261
Article
Google Scholar
Kavehrad M, Jivkova S: Indoor broadband optical wireless communications: optical subsystems design and their impact on channel characteristics. IEEE Wirel Commun Mag Vol 2003, 10: 30-35.
Article
Google Scholar
Al-Ghamdi AG, Elmirghani JMH: Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion. IEEE Trans Commun 2004, 52(1):37-45. 10.1109/TCOMM.2003.822160
Article
Google Scholar
Al-Ghamdi AG, Elmirghani JMH: Multiple spot diffusing geometries for indoor optical wireless communication systems. Int J Commun Syst 2003, 16: 909-922. 10.1002/dac.627
Article
Google Scholar
Jungnickel V, von Helmolt C, Kruger U: Broadband wireless infrared LAN architecture compatible with ethernet protocol. Electron Lett 1998, 34(25):2371-2372. 10.1049/el:19981676
Article
Google Scholar
Narasimhan R, Audeh MD, Kahn JM: Effect of electronic-ballast fluorescent lighting on wireless infrared links. IEE Proc Optoelectron 1996, 143(6):347-354. 10.1049/ip-opt:19960877
Article
Google Scholar
Moreira AJC, Valadas RT, de Olveira Duarte AM: Optical interference produced by artificial light. Wirel Netw 1997, 3(2):131-140. 10.1023/A:1019140814049
Article
Google Scholar
Fernando XN, Krishnan S, Sun H, Kamyar KM: Adaptive denoising at infrared wireless receivers. Proc SPIE 2003, 5074: 199-207.
Article
Google Scholar
Rajbhandari S, Ghassemlooy Z, Angelova M: Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network. IEEE/OSA J Lightw Technol 2009, 27(20):4493-4500.
Article
Google Scholar
Rajbhandari S, Ghassemlooy Z, Angelova M: Wavelet--artificial neural network receiver for indoor optical wireless communications. IEEE/OSA J Lightw Technol 2011, 29(17):2651-2659.
Article
Google Scholar
Wong KK, O'Farrell T: Spread spectrum techniques for indoor wireless IR communications. IEEE Wirel Commun 2003, 10(2):54-63. 10.1109/MWC.2003.1196403
Article
Google Scholar
Komine T, Nakagawa M: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consumer Electron 2004, 50(1):100-107. 10.1109/TCE.2004.1277847
Article
Google Scholar
O'Brien D, Katz M: Optical wireless communications within fourth-generation wireless systems [invited]. OSA J Opt Netw 2005, 4(6):312-322. 10.1364/JON.4.000312
Article
Google Scholar
Japan Electronics and Information Technology Industries Association[http://www.jeita.or.jp]
OMEGA, the Home Gigabit Access Project[http://www.ict-omega.eu/]
The OMEGA Project Flyer [Online]. Available: http://www.ict-omega.eu/fileadmin/documents/flyers/OMEGA_Project_Flyer.pdf
Future networks, Projects Portfolio, Seventh EU Framework Programme for Research and Technological Development, Information Society and Media, European Commission 2008.
IEEE 802.15 WPAN-Visible Light Communication Interest Group (IGvlc)[http://ieee802.org/15/pub/IGvlc.html]
Sugiyama H, Haruyama S, Nakagawa M: Experimental investigation of modulation method for visible-light communications. IEICE Trans Commun 2006, E89-B(12):3393-3400. 10.1093/ietcom/e89-b.12.3393
Article
Google Scholar
Elgala H, Mesleh R, Haas H, Pricope B: OFDM visible light wireless communication based on white LEDs. In Proc IEEE Vehicular Technol Conf. Volume 4212879. Dublin, Ireland; 2007:2185-2189.
Google Scholar
Grubor J, Randel S, Langer K-D, Walewski JW: Broadband information broadcasting using LED-based interior lighting. IEEE/OSA J Lightw Technol 2008, 26(24):3883-3892.
Article
Google Scholar
Zeng L, O'Brien DC, Minh HL, Faulkner GE, Lee K, Jung D, Oh Y, Won T: High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE J Sel Areas Commun 2009, 27(9):1654-1662.
Article
Google Scholar
Kwon JK: Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links. IEEE Photon Technol Lett 2010, 22(19):1455-1457.
Article
Google Scholar
Sunghwan K, Sung-Yoon J: Novel FEC coding scheme for dimmable visible light communication based on the modified Reed-Muller codes. IEEE Photon Technol Lett 2011, 23(20):1514-1516.
Article
Google Scholar
Komine T, Lee JH, Haruyama S, Nakagawa M: Adaptive equalization system for visible light wireless communication utilizing multiple white led lighting equipment. IEEE Trans Wirel Commun 2009, 8(6):2892-2900.
Article
Google Scholar
Minh HL, O'Brien D, Faulkner G, Zeng L, Lee K, Jung D, Oh Y: 80 Mbit/s visible light communications using pre-equalized white LED. In Proc Eur Conf Opt Commun no. P.6.06. Brussels, Belgium; 2008:1-2.
Google Scholar
Minh HL, O'Brien D, Faulkner G, Zeng L, Lee K, Jung D, Oh Y, Won ET: 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photon Technol Lett 2009, 21(15):1063-1065.
Article
Google Scholar
Grubor J, Lee SCJ, Langer K-D, Koonen T, Walewski JW: Wireless high-speed data transmission with phosphorescent white-light LEDs. In Proc Eur Conf Opt Commun, PD3.6. Berlin, Germany; 2007:1-2.
Google Scholar
Vučić J, Kottke C, Nerreter S, Langer K-D, Walewski JW: 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. IEEE/OSA J Lightw Technol 2010, 28(24):3512-3518.
Google Scholar
Vučić J, Kottke C, Nerreter S, Büttner A, Langer K-D, Walewski JW: White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation. IEEE Photon Technol Lett 2009, 21(20):1511-1513.
Article
Google Scholar
Lee K, Park H: Modulations for visible light communications with dimming control. IEEE Photon Technol Lett 2011, 23(16):1136-1138.
Article
Google Scholar
IEEE 802.15.7 VLC PHY/MAC Proposal[https://mentor.ieee.org/802.15/dcn/09/15-09-0733-00-0007-vlc-phy-mac-proposal-samsung-etri.pdf]
Ntogari G, Kamalakis T, Walewski JW, Sphicopoulos T: Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. OSA J Opt Commun Netw 2011, 3: 56-65.
Article
Google Scholar
Liu Q, Qiao C, Mitchell G, Stanton S: Optical wireless communication networks for first- and last-mile broadband access [Invited]. OSA J Opt Netw 2005, 4: 807-828. 10.1364/JON.4.000807
Article
Google Scholar
Chan VWS: Free-space optical communications. IEEE/OSA J Lightw Technol 2006, 24(12):4750-4762.
Article
Google Scholar
Zilberman A, Kopeika NS: Laser beam wander in the atmosphere: implications for optical turbulence vertical profile sensing with imaging LIDAR. J Appl Remote Sens 2008., 2(023540):
Andrews LC, Phillips RL: Laser Beam Propagation Through Random Media. 2nd edition. SPIE Press, Bellingham, WA; 2005.
Book
Google Scholar
Tatarski VI: Wave Propagation in a Turbulent Medium. McGraw-Hill, New York; 1961. (Reprinted by Dover, New York, 1967)
MATH
Google Scholar
Chernov LA: Wave Propagation in a Random Medium. McGraw-Hill, New York; 1960. (Reprinted by Dover, New York, 1967)
Google Scholar
Ishimaru AK: Wave Propagation and Scattering in Random Media. Volume I and II. Academic Press, New York; 1978. Vol. II Chapters 16-20 are especially relevant
Google Scholar
Strohbehn JW: Laser Beam Propagation Through the Atmosphere. Springer-Verlag, New York; 1978.
Book
Google Scholar
Zuev VE: Laser Beams in the Atmosphere. Consultants Bureau, New York; 1982.
Book
Google Scholar
Andrews LC, Phillips RL, Hopen CY: Laser Beam Scintillation with Applications. SPIE Press, Bellingham, WA; 2001.
Book
Google Scholar
Lawrence RS, Strohbehn JW: A survey of clear-air propagation effects relevant to optical communications. Proc IEEE 1970, 58: 1523-1545.
Article
Google Scholar
Fante RW: Electromagnetic beam propagation in turbulent media. Proc IEEE 1975, 63: 1669-1692.
Article
Google Scholar
Yura HT, McKinley WG: Optical scintillation statistics for IR ground-to-space laser communication systems. OSA Appl Opt 1983, 22: 3353-3358.
Article
Google Scholar
Al-Habash MA, Andrews LC, Phillips RL: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt Eng 2001, 40(8):1554-1562. 10.1117/1.1386641
Article
Google Scholar
Anguita JA, Djordjevic IB, Neifeld MA, Vasic BA: Shannon capacities and error-correction codes for optical atmospheric turbulence channels. OSA J Opt Netw 2005, 4(9):586-601. 10.1364/JON.4.000586
Article
Google Scholar
Stotts LB, Kolodzy P, Pike A, Graves B, Daugherty D, Douglas J: Free space optical communication link budget estimation. OSA Appl Opt 2010, 49(28):5333-5343.
Article
Google Scholar
Arnon S: Effects of atmospheric turbulence and building sway on optical wireless-communication systems. OSA Opt Lett 2003, 28: 129-131.
Article
Google Scholar
Kedar D, Arnon S: Optical wireless communication through fog in the presence of pointing errors. OSA Appl Opt 2003, 42: 4946-4954.
Article
Google Scholar
Yuksel H, Milner S, Davis CC: Aperture averaging for optimizing receiver design and system performance on free-space optical communication links. OSA J Opt Netw 2005, 4(8):462-475. 10.1364/JON.4.000462
Article
Google Scholar
Yuksel H, Davis CC: Aperture averaging analysis and aperture shape invariance of received scintillation in free space optical communication links. In Proc SPIE Free-Space Laser Commun VI. Volume 6304. San Diego; 2006.
Google Scholar
Wilson SG, Brandt-Pearce M, Cao Q, Baedke M: Optical repetition MIMO transmission with multi-pulse PPM. IEEE J Sel Areas Commun 2005, 23(9):1901-1910.
Article
Google Scholar
Navidpour SM, Uysal M, Kavehrad M: BER performance of free-space optical transmission with spatial diversity. IEEE Trans Wirel Commun 2007, 6(8):2813-2819.
Article
Google Scholar
Goldsmith A, Jafar SA, Jindal N, Vishwanath S: Capacity limits of MIMO channels. IEEE J Sel Areas Commun 2003, 21(5):684-702. 10.1109/JSAC.2003.810294
Article
Google Scholar
Khalighi M-A, Schwartz N, Aitamer N, Bourennane S: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. OSA J Opt Commun Netw 2009, 1: 580-593.
Article
Google Scholar
García-Zambrana A, Castillo-Vázquez C, Castillo-Vázquez B: Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels. OSA Opt Express 2011, 19: 13480-13496.
Article
Google Scholar
Davis CC, Smolyaninov II: The effect of atmospheric turbulence on bit-error-rate in an on-off-keyed optical wireless system. Proc SPIE Free-Space Laser Commun Laser Imag 2002, 4489: 126-137.
Article
Google Scholar
Trisno S, Smolyaninov II, Milner SD, Davis CC: Delayed diversity for fade resistance in optical wireless communication system through simulated turbulence. Proc SPIE Opt Transmission Syst Equip WDM Netw III 2005, 5596: 385-393. Philadelphia, Pennsylvania
Article
Google Scholar
Henniger H, Gonzalez A: Transmission scheme and error protection for simplex long-distance atmospheric FSO systems. Special Issue Mediterranean J Electron Commun Hybrid RF Opt Wirel Commun 2006, 2(3):118-126.
Google Scholar
Zhu X, Kahn JM: Performance bounds for coded free-space optical communications through atmospheric turbulence channels. IEEE Trans Commun 2003, 51: 1233-1239. 10.1109/TCOMM.2003.815052
Article
Google Scholar
Djordjevic IB: LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation. OSA Opt Express 2007, 15: 10026-10032.
Article
Google Scholar
Greco JA: Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4 km free-space optical communication experiment. SPIE Proc Free-space Laser Communications IX 2009., 7464:
Google Scholar
Henniger H, David F, Giggenbach D, Rapp C: Evaluation of FEC for the atmospheric optical IM/DD channel. SPIE Proc Free-Space Laser Communication Technologies XV 2003., 4975:
Google Scholar
Anguita JA, Neifeld MA, Hildner B, Vasic B: Rateless coding on experimental temporally correlated FSO channels. IEEE/OSA J Lightw Technol 2010, 28(7):990-1002.
Article
Google Scholar
Fried DL: Limiting resolution looking down through atmosphere. JOSA 1966, 56: 1380-1384. 10.1364/JOSA.56.001380
Article
Google Scholar
Fried DL: Aperture averaging of scintillation. JOSA 1967, 57: 169-172. 10.1364/JOSA.57.000169
Article
Google Scholar
Fried DL, Seidman JB: Laser-beam scintillation in the atmosphere. JOSA 1967, 57: 181-185. 10.1364/JOSA.57.000181
Article
Google Scholar
Greenwood DP, Fried DL: Power spectra requirements for wave-front-compensative systems. JOSA 1976, 66: 193-206. 10.1364/JOSA.66.000193
Article
Google Scholar
Fried DL: Anisoplanatism in adaptive optics. JOSA 1982, 72: 52-61. 10.1364/JOSA.72.000052
Article
Google Scholar
Barchers JD, Fried DL: Optimal control of laser beams for propagation through a turbulent medium. JOSA 2002, A: 1779-1793.
Article
Google Scholar
Sodnik Z, Furch B, Lutz H: Optical intersatellite communication. IEEE J Sel Topics Quantum Electron 2010, 16(5):1051-1057.
Article
Google Scholar
Tolker-Nielsen T, Oppenhaeuser GT: In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. Proc SPIE 2002., 6635(59430):
Jono T, Takayama Y, Kura N, Ohinata K, Koyama Y, Shiratama K, Sodnik Z, Demelenne B, Bird A, Arai K: OICETS on-orbit laser communication experiments. Proc SPIE 2006, 6105(610503):1-11.
Google Scholar
Fujiwara Y, Jono T, Yamawaki T, Arai K, Toyoshima M, Kunimori H, Sodnik Z, Bird A, Demelenne B: Optical inter-orbit communications engineering test satellite (OICETS). Acta Astronautica 2007, 61(1-6):163-175. 10.1016/j.actaastro.2007.01.021
Article
Google Scholar
Smutny B, Kampfner H, Muhlnikel G, Sterr U, Wandernoth B, Heine F, Hildebrand U, Dallmann D, Reinhardt M, Freier A, Lange R, Bohmer K, Feldhaus T, Muller J, Weichert A, Seel S, Meyer R, Czichy R: 5.6 Gb/s optical intersatellite communication link. Proc SPIE 2009., 7199(719906):
Wilson KE, Lesh JR, Yan TY: GOPEX: a laser uplink to the Galileo spacecraft on its way to Jupiter. Proc SPIE 1993, 1866: 138-146.
Article
Google Scholar
Wilson KE, Lesh JR, Araki K, Arimoto Y: Overview of the ground-to-orbit lasercom demonstration (GOLD). Proc SPIE 1997, 2990: 23.
Article
Google Scholar
Toyoshima M, Yamakawa S, Yamawaki T, Arai K, Reyes M, Alonso A, Sodnik Z, Demelenne B: Ground-to-satellite optical link tests between Japanese laser communications terminal and European geostationary satellite ARTEMIS. Proc SPIE 2004, 5338: 1-15.
Article
Google Scholar
Horwath J, Perlot N, Knapek M, Moll F: Experimental verification of optical backhaul links for high-altitude platform networks: atmospheric turbulence and downlink availability. Int J Satell Commun Netw 2007, 25(5):501-528. 10.1002/sat.888
Article
Google Scholar
Perlot N, Knapek M, Giggenbach D, Horwath J, Brechtelsbauer M, Takayama Y, Jono T: Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station oberpfaffenhofen (OGS-OP). Proc SPIE 2007., 6457(645704):
Horwath J, Fuchs C: Aircraft to ground unidirectional laser-comm terminal for high resolution sensors. Proc SPIE 2009., 7199(719909):
Baister G, Kudielka K, Dreischer T, Tüchler M: Results from the DOLCE (deep space optical link communications experiment) Project. Proc SPIE 2009., 7199(71990B):
Pe'er IL, Naftali N, Yogev A: High power, solar pumped, Nd:YAG, laser amplifier for free space laser communication. Proc SPIE 1997, 3139: 194-204.
Article
Google Scholar
Rochat E, Dändliker R, Haroud K, Czichy RH, Roth U, Costantini D, Holzner R: Fiber amplifiers for coherent space communication. IEEE J Sel Topics Quantum Electron 2001, 7(1):64-81. 10.1109/2944.924012
Article
Google Scholar
Polishuk A, Arnon S: Optimization of a laser satellite communication system with an optical preamplifier. J Opt Soc Am A 2004, 21(7):1307-1315. 10.1364/JOSAA.21.001307
Article
Google Scholar
Dawson JW, Messerly MJ, Beach RJ, MYSEA Stappaerts, Sridharan AK, Pax PH, Heebner JE, Siders CW, Barty CPJ: Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. OSA Opt Express 2008, 16(17):13240-13266.
Article
Google Scholar
Djuknic GM, Freidenfelds J, Okunev Y: Establishing wireless communications services via high-altitude aeronautical platforms: a concept whose time has come? IEEE Commun. Mag 1997, 35(9):128-135.
Google Scholar
Knapek M, Horwath J, Moll F, Epple B, Courville N, Bischl H, Giggenbach D: Optical high-capacity satellite downlinks via high-altitude platform relays. Proc SPIE 2007., 6709(67090E):
Fidler F, Knapek M, Horwath J, Leeb WR: Optical communications for high-altitude platforms. IEEE J Sel Topics Quantum Electron 2010, 16(5):1058-1070.
Article
Google Scholar
Boroson DM, Biswas A, Edwards BL: MLCD: Overview of NASA's Mars laser communications demonstration system. Proc SPIE 2004, 5338: 16-28.
Article
Google Scholar
Mendenhall JA, Candell LM, Hopman PI, Zogbi G, Boroson DM, Caplan DO, Digenis CJ, Hearn DR, Shoup RC: Design of an optical photon counting array receiver system for deep-space communications. Proc IEEE 2007, 95(10):2059-2069.
Article
Google Scholar
Moision B, Hamkins J: Deep-space optical communications downlink budget: modulation and coding. IPN Prog Rep 2003, 42-154: 1-28.
Google Scholar
Lange R, Smutny B, Wandernoth B, Czichy R, Giggenbach D: 142 km, 5.625 Gb/s free-space optical link based on homodyne BPSK modulation. Proc SPIE 2006., 6105(61050A):
Muhammad SS, Javornik T, Jelovcan I, Ghassemlooy Z, Leitgeb E: Comparison of hard-decision and soft-decision channel coded M-ary PPM performance over free space optical links. Eur Trans Telecommun 2008, 20(8):746-757.
Article
Google Scholar
Djordjevic IB, Vasic B, Neifeld MA: Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel. IEEE Photon Technol Lett 2006, 18(14):1491-1493.
Article
Google Scholar
Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S, Takizawa K, Kuri T, Klaus W, Toyoda M, Kunimori H, Jono T, Arai K: Ground-to-satellite laser communication experiments. IEEE Aerospace Electron Syst Mag 2008, 23(8):10-18.
Article
Google Scholar
Zhu X, Kahn JM: Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 2002, 50(8):1293-1300. 10.1109/TCOMM.2002.800829
Article
Google Scholar
Lee J, Chan VWS: Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference. OSA J Opt Commun Netw 2009, 1(5):463-483.
Article
Google Scholar
Chen CC, Gardner CS: Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links. IEEE Trans Commun 1989, 37(3):252-260. 10.1109/26.20099
Article
Google Scholar
Liu X: Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading. OSA Appl Opt 2010, 49: 915-919.
Article
Google Scholar
Arnon S, Kopeika NS, Kedar D, Zilberman A, Arbel D, Livne A, Guelman M, Orenstain M, Michalik H, Ginati A: Performance limitation of laser satellite communication due to vibrations and atmospheric turbulence: down-link scenario. Int J Satell Commun Netw 2003, 21(6):561-573. 10.1002/sat.769
Article
Google Scholar
Perlot N: Atmospheric occultation of optical intersatellite links: coherence loss and related parameters. OSA Appl Opt 2009, 48(12):2290-2302.
Article
Google Scholar
Arnon S, Rotman S, Kopeika NS: Beam width and transmitter power adaptive to tracking system performance for free-space optical communication. OSA Appl Opt 1997, 36(24):6095-6101.
Article
Google Scholar
Ortiz GG, Lee S, Monacos S, Wright M, Biswas A: Design and development of a robust ATP subsystem for the altair UAV-to-ground lasercomm 2.5 Gb/s demonstration. Proc SPIE 2003, 4975: 103-114.
Article
Google Scholar
Stotts LB, Andrews LC, Cherry PC, Foshee JJ, Kolodzy PJ, Mcintire WK, Northcott M, Phillips RL, Pike HA, Stadler B, Young DW: Hybrid optical RF airborne communications. Proc IEEE 2009, 97(6):1109-1127.
Article
Google Scholar
Milner SD, Davis CC: Hybrid free space optical/RF networks for tactical operations. In Proc IEEE Milcom 1. Monterey; 2004:409-415.
Google Scholar
Izadpanah H, Elbatt T, Kukshya V, Dolezal F, Ryu BK: High-availability free space optical and RF hybrid wireless networks. IEEE Wirel Commun 2003, 10(2):45-53. 10.1109/MWC.2003.1196402
Article
Google Scholar
Derenick J, Thorne C, Spletzer S: On the deployment of a hybrid FSO/RF mobile ad-hoc network. In Proc IEEE/RSJ Int Conf Intelligent Robots and Syst. Edmonton; 2005:3990-3996.
Google Scholar
Tapse H, Borah DK: Hybrid Optical/RF channels: characterization and performance study using low density parity check codes. IEEE Trans Commun 2009, 57: 3288-3297.
Article
Google Scholar
Kukshya V, Rappaport TS, Izadpanah H, Tangonan G, Guerrero RA, Mendoza JK, Lee B: Free-space optics and high-speed RF for next generation networks--propagation measurements. In Proc IEEE VTC-Fall 1. Vancouver; 2002:616-620.
Google Scholar
Borah DK, Voelz DG: Pointing error effects on free space optical communication links in the presence of atmospheric turbulence. IEEE/OSA J Lightwave Technol 2009, 27: 3965-3973.
Article
Google Scholar
Akbulut A, Ilk HG, Ari F: Design, availability and reliability analysis on an experimental outdoor FSO/RF communication system. Proc Transparent Opt Netw 2005, 1: 403-406.
Google Scholar
Zhang W, Hranilovic S, Shi C: Soft-switching hybrid FSO/RF links using short-length raptor codes: design and implementation. IEEE J Sel Areas Commun 2009, 27: 1698-1708.
Article
Google Scholar
Abdul Hussein A, Oka A, Nguyen T, Lampe L: Rateless coding for hybrid free-space optical and radio-frequency communication. IEEE Trans Wirel Commun 2010, 9: 907-913.
Article
Google Scholar
Vangala S, Pishro-Nik H: A highly reliable FSO/RF communication system using efficient codes. In Proc IEEE Globecom. Washington, D.C.; 2007:2232-2236.
Google Scholar
Luna R, Borah DK, Jonnalagadda R, Voelz D: Experimental demonstration of a hybrid link for mitigating atmospheric turbulence effects in free space optical communication. IEEE Photon Technol Lett 2009, 21: 1196-1198.
Article
Google Scholar
He B, Schober R: Bit-interleaved coded modulation for hybrid RF/FSO systems. IEEE Trans Commun 2009, 57: 3753-3763.
Article
Google Scholar
Tapse H, Borah DK: J Perez-Ramirez, Hybrid optical/RF channel performance analysis for turbo codes. IEEE Trans Commun 2011, 59: 1389-1399.
Article
Google Scholar