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Abstract

The work presented in this paper addresses the sum rate maximization problem for the downlink of a wireless
network where multiple transmitter-receiver links share the same medium and thus potentially interfere with each
other. The solution of this problem requires the optimization of two aspects: the first one is the set of links that can be
jointly scheduled, and the second is the set modulation and coding schemes (MCSs) that maximize the sum rate. A
feasible link achieves a certain MCS if its signal-to-interference-plus-noise ratio (SINR) is above a threshold or target
SINR associated with the MCS and the SINR of each link is coupled with the other links’ powers that are required to
achieve their respective MCSs. Since the available MCSs form a finite set, the rate maximization problem has a
combinatorial nature. We present iterative algorithms that find a suboptimal solution to the combinatorial problem
by operating in two phases. Phase one verifies the feasibility of the MCS assignment by performing either eigenvalue
analysis or power consumption analysis, and phase two uses the feasibility information delivered by phase one to
modify either the set of links (user removal) or the MCS assignment if feasibility conditions are not fulfilled. Our
approach extends the concept of user removal to the case of adaptive modulation, and this generalization allows us
to schedule users more efficiently, improving outage probability figures. Numerical results show that the proposed
algorithms achieved a good tradeoff between sum rate performance and complexity. Moreover, our algorithms are a
low complex alternative to the state-of-the-art user-removal algorithms with minimum gap in outage performance.
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1 Introduction

The efficient resource allocation in wireless networks
is fundamental to fulfill several practical quality of ser-
vice (QoS) measures like data rate and outage probabil-
ity. The number of wireless users and data services has
increased dramatically over the last few years, and opti-
mization of the resource allocation has become primal
to guarantee both user and operator satisfaction without
increasing system requirements, mainly bandwidth and
power budget. Moreover, there are scenarios where the
set of transmitter-receiver pairs (links) operate simulta-
neously in a shared medium, and interference mitigation
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techniques must be employed. The QoS is measured
in practice by the signal-to-interference-plus-noise ratio
(SINR) and recent works on resource allocation optimiza-
tion for interference-coupled networks [1-8] show the
relation between the SINR maximization and the effi-
cient power and rate allocation. Since the achievable data
rate depends on the SINR which is a global function of
all transmit powers, the schemes of power control are
fundamental to maximize either a global network utility
[1,6-8] or individual rates [2,3,9] in networks where inter-
ference is the main limitation and cannot be completely
eliminated.

In interference-coupled networks, the successful
scheduling of a set of interfering links is conditioned to
the fulfillment of all individual QoS requirements and
power constraints. An efficient scheduling policy must
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determine the proper set of links for which there exists a
power and rate allocation that meets power constraints
and SINR requirements. However, finding the set of links
that maximizes a given network metric is a combinatorial
problem which has been claimed to be NP-complete [10].
A suboptimal solution to this problem is found in the so
called user-removal techniques [10-12] where the users
that violate the power constraints or QoS requirements
are found iteratively and temporarily dropped.

The works related to resource allocation optimization
and the ones of user removal have different objectives,
and both fields remain isolated. The former assumes that
for a given set of links, there exists an infinite number of
solutions to the resource allocation problem, and the main
objective is to find the allocation that maximizes a specific
utility function such as sum rate and power consump-
tion. The latter is concerned about the set of links that
can be scheduled whose QoS requirements are fixed and
the resource allocation can be achieved by conventional
allocation schemes. There is a number of open issues
that must be solved in interference-coupled networks,
and the objective of this work is to provide a solution
to the scheduling problem and simultaneously maximize
the total sum rate by performing efficient resource alloca-
tion. Moreover, unlike the available literature, we consider
that the values of the SINR are constrained to take values
from a finite set of thresholds or targets associated with
a given set of modulation and coding schemes (MCSs).
By considering the different MCSs, we extend the phi-
losophy of user removal for the case of non-fixed SINR
targets, and at the same time, we provide a methodology
to find the MCS allocation that maximizes the total sum
rate.

1.1 Related works

Over the last 20 years, several theoretical [3,5,11,13-16]
and practical [2,6,12,17] works have been developed to
understand and solve the problems of power allocation
and utility maximization for cellular, multihop, peer-to-
peer, and digital subscriber line (DSL) networks. Early
works on power control [13,17-20] designed iterative algo-
rithms under the standard interference function frame-
work [3,13] in order to guarantee the convergence of
the algorithms to a unique and optimal power alloca-
tion solution. These works assume that the set of given
links is always feasible, i.e., for such a set, there always
exists a solution to the power allocation problem. More
recent works [3,6,14] studied the relationship between the
rate allocation and power control, specially for the high
SINR regime. This is a common assumption because for
interference-coupled systems, the mathematical model-
ing of the resource allocation problem in more tractable
[5] and efficient iterative algorithms can be developed.
For instance, in [14], the power control problem for rate
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maximization is formulated as a convex problem and its
solution is found via geometric programming (GP) for
wireless networks.

Related works for interference-coupled wired (DSL) net-
works [7,8,21] show that suboptimal yet efficient power
allocation for rate maximization can be achieved when the
non-convex rate maximization problem is approximated
by alternative convex objective functions of the transmit
powers. In [8], the authors show that relaxed forms of the
objective function of the rate maximization problem lead
to the convergence of the proposed algorithms, and the
accuracy of such approximation depends on the convexity
properties of the objective functions. In [21], the weighted
sum rate maximization problem was extended to the mul-
tiuser multicarrier scenario in interference-coupled sys-
tems. The idea behind the algorithms presented in [7,21]
is to solve iteratively the original resource allocation prob-
lem by optimally solving in each iteration a relaxed version
of the original problem. In each iteration, the local opti-
mal solution bounds the solution of the original problem
for a given resource allocation, and due to the proper-
ties of the relaxed objective function, the convergence to
a local optimum is guaranteed. This is known as succes-
sive convex approximation (SCA) whose goal is to refine
the solution found for the relaxed problem in order to
close the gap between the approximated and the optimum
resource allocation. A framework to solve general opti-
mization problems under SCA and a comprehensive anal-
ysis of state-of-the-art dynamic spectrum management
algorithms is presented in [16]. The work in [21] solved
the power spectrum management problem, implement-
ing a SCA algorithm that exploits the characteristics of
the feasible region of resource allocation solutions, and in
each iteration, GP is used to solved the local power assign-
ment problem. The works of Tan et al. [1] and Stanczak
et al. [5] presented algorithms that solve optimally the
joint power and rate allocation problem by exploiting the
convex characteristics of the feasible rate region and gen-
eralized the resource allocation problem for both high and
low SINR regimes.

The mathematical abstraction of an interference-
coupled network has a strong connection to the theory
of irreducible matrices [22,23], and the Perron-Frobenius
theorem [5,22] is a fundamental part of several works
[1-3,5,11,14] that characterize the feasible rate region and
solve optimally the resource allocation problem. The the-
oretical results derived from this theorem [1,5,11] allow to
render the network optimization problem into an eigen-
value problem and to analyze and verify the feasibility
of both, the set of scheduled links and its correspond-
ing resource allocation. This mathematical tool has been
used to solve the rate and power allocation problem for a
fixed set of links (e.g., [1,5,6]), assuming that the rates and
powers can take any real positive value, and their main
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objective is to find the optimum allocation that maximizes
a given utility function under a set of power constraints
and transmission schemes. The user-removal techniques
[11] exploit the Perron-Frobenius theory to identify the
infeasibility of a set of links in scenarios where, for a given
set of power constraints and rate (SINR) requirements,
the classical power control algorithms (e.g., [17]) do not
converge.

1.2 Contributions

The joint scheduling and resource allocation that maxi-
mize the sum rate is a complex combinatorial problem
that grows exponentially with the number of links and
depends strongly on the number of available MCSs. The
optimal solution of such a combinatorial problem can be
found via exhaustive search by selecting the set of links
and MCSs that yield the maximum sum rate. Such an algo-
rithm has prohibitive complexity; therefore, we propose
suboptimal algorithms that solve the combinatorial prob-
lem efficiently and achieve a tradeoff between sum rate
performance and complexity. Our algorithms merge the
objectives of the resource allocation optimization and the
user-removal techniques. This integration is achieved by
operating over two dimensions of decision, the set of links
and the set of available MCSs. Conceptually, the proposed
algorithms work in two phases. The first phase establishes
that for a given set of links, there exists a power and rate
allocation that satisfies the SINR requirements imposed
by some MCSs under a set of power constraints. In other
words, this phase verifies if the set of links and their
MCSs are feasible. The second phase modifies either the
set of links or the MCSs, based on the feasibility measure
provided by the first phase.

We show how this two iterative phases can be designed
using the Perron-Frobenius theory by formulating the
sum rate maximization problem as an eigenvalue opti-
mization problem. Although, this approach achieves
acceptable sum rate and outage figures, in each iteration it
requires the computation of the eigenvalues that charac-
terized the interference coupled network. For this reason,
we design alternative solutions that only require either
the evaluation of the power consumption or the estima-
tion of the achievable SINR per iteration. Furthermore,
we introduce a low complexity algorithm that performs
a fast estimation of the set of links and MCSs that solve
the sum rate maximization problem. Numerical results
show that despite the fact that the proposed algorithms
are suboptimal strategies, they are asymptotically optimal
when the number of users in the network grows to infin-
ity. Moreover, we show that our algorithms generalize the
concept of user removal for the case of multiple SINR
targets and that the proposed schemes are efficient low-
complex alternatives to the state-of-the-art user-removal
algorithms.
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1.3 Organization
The remainder of the paper is organized as follows.
Section 2 presents the system model. Section 3 describes
the link selection and resource allocation problem.
Section 4 addresses the algorithms that find a solution
for the joint resource allocation and scheduling problem.
Section 5 shows numerical examples for the assessment
of the presented algorithms using different performance
metrics. The main conclusions are drawn in Section 6.
Some notational conventions are as follows: matrices
and column vectors are set in boldface. ()T, | - |, || - I
denote transpose, set cardinality, and the p norm, respec-
tively. An M x N matrix A is non-negative if a,,,, > 0, for
all m and n, and write A > 0. The term p(A) denotes the
Perron-Frobenius root (PF-root) which equals the largest
modulus eigenvalue of matrix A [22,23]. I is the iden-
tity matrix of compatible size; diag(x) denotes a diagonal
matrix whose main diagonal is x. Al! is the ith principal
submatrix of A whose ith row and column are removed.
The same notation is applied for a vector whose ith ele-
ment is removed. Let y be a vector, then y; =[y]; is the
ith element. For two vectors x and y, x > vy is a compo-
nentwise inequality. R, is the set of strictly positive real
numbers.

2 System model

Consider the wireless network depicted in Figure 1a where
the current channel instance is concurrently being used
by K-synchronized links. The receivers decode its corre-
sponding data, treating interference as white noise, and
multiuser detection is not employed. In order to mathe-
matically characterize the interference-coupled network,
we adopt the matrix notation and the system model used
in recent works [1,5]. Let py be the power used by the kth
link and p the vector that summarizes all K powers. The
SINR experienced by the kth link is [5]

PGk

Zzl';k piGri +o ,(2’

where Gy; is the power attenuation from the transmitter
on link i to the receiver on link &, taking into account prop-
agation loss and fast and slow fading, and Gy is the power
loss for the intended transmission at link k. The term
0'13 represents the additive white Gaussian noise (AWGN)
power for the kth receiver.

Efficient allocation schemes seek the simultaneous pro-
visioning of individual QoS for multiple wireless links,
which implies that each link achieves a SINR that can be
maintained above a given threshold or target:

SINRk(P) > - 1)

The SINR target of the kth link is constrained to take

values from a finite set of targets yx € My where My =
{y D, .., y@y, =D~ M and M is the number

SINR; (p) =
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Figure 1 Wireless scenario. (a) General channel model for two wireless links k and i. (b) Distributed antenna system scenario.

(b)

of available MCSs. A larger value of yx implies that link
k attempts to maintain a more spectral efficient modula-
tion scheme. Depending on the service, My can be used
to assign different priorities among users or to limit their
achievable data rates. For instance, the rate demand in
link i can be limited while link k can improve its perfor-
mance, having a larger number of available modulations
|IMy| > |M;| for some k # i. For the sake of simplic-
ity, we assume the same M for all links, My = M, Vk.
The kth link is associated with a modulation index 1 that
defines the position of its SINR target in the set M so
that y; = y %), The discrete set of targets is given by the
available set of MCSs supported in the systems, which in
practice is defined by the user equipment capabilities and
the wireless network technology. The vector of SINR tar-
gets is defined as y = (y1,..., yK)T, and all SINR targets
will be summarized in a diagonal matrix I' = diag(y).

The users’ requirements in (1) can be described in a
vector inequality of the form

p=TVp+TIz 2)

where V is a K x K non-negative matrix whose entries are
defined as

| Gri/Gre itk #i
V= {o ifk=i

We assume that V is irreducible, which means that each
link has at least one interferer [3]. The weighted noise
vector z is defined as

T
Gn Gkx
We consider two sets of power constraints: (a) individ-
ual power constraints (IPC), summarized in p so that pg
is the maximum available power for the kth link, and (b)
total power constraints (TPC) so that Zle pr < Py. For

the case of TPC, let B be a K x K non-negative irreducible
matrix defined as [5]

B=TV4 irz1l =T <v+ lle) . (3)
Py Py

The matrix B absorbs the total power constraints as an
additional source of interference whose power is inversely
proportional to the power P;. The properties of B provide
us insight into the transmission reliability and how inter-
ference, powers, and SINR targets are coupled. For the
case of IPC, there exists a set of K matrices B, and each
one absorbs a different individual power constraint [5,11].

3 Problem formulation

In resource allocation theory, one of the fundamental
problems is to find the appropriate vector of targets y in
order to optimize a given metric. The set of all attainable
target vectors is called feasible SINR target region. The
geometry of the feasible SINR target region (Figure 2) is
defined by the coupling matrix V, the noise z, the avail-
able SINR targets y defined by the MCSs, and the power
constraints. Several works that provide a solution to the
resource allocation problem exploit the characteristics of
the feasible rate region which has a logarithmic relation
with the feasible SINR targets. The optimum resource
allocation that maximizes the system performance lies in
the boundary of such feasible region [3,5,6]. The infor-
mation provided by the geometry of the feasible rate
region can be exploited to determine not only the optimal
resource allocation but also if time-sharing is required.
This means that if for the set of links that is attempted
to be scheduled, it does not exist a power allocation that
satisfies all links requirements, the set must be split off
assigning different time slots to different subset of links
[1]. The employment of time-sharing is given by the con-
vexity of the rate region; however, such a geometry is not
known a priori, and finding the best subsets of users that
should use time-sharing is a combinatorial problem that
grows exponentially with the number of links [1].

Definition 1. Feasibility conditions. They are the sets
of SINR requirements and power constraints that the
resource allocation must fulfill.
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Figure 2 Feasible target region. For certain V, z, M, and P;, this is an example of the boundaries for the SINR target region for two cases:
y € Ry (dashed line) and y € M (solid line). The black circles (feasible vectors) represent the combinations of y that can be jointly achievable for
a two-links channel realization. The white circles (unfeasible vectors) cannot be jointly achieved by any feasible power allocation.

Definition 2. Resource feasibility. We say that a power
vector p is feasible if for such a vector, the feasibility con-
ditions are met. A set of targets y or I is called feasible if
all targets in the set can be jointly achieved by power con-
trol. A set of links is called feasible if there exists at least
one set of targets whose related powers meet the feasibility
conditions.

The power allocation and the SINR target (MCS) selec-
tion are two sides of the same problem, i.e., the feasibility
of p is given by the feasibility of y and vice versa. For
each feasible target vector, there exists a feasible compo-
nentwise power vector (unique up to a scaling factor) that
produces such a target vector [1,3,5]. From (1) and (2), it
can be observed that the power vector p and the achiev-
able SINRs depend on the targets I'. From power control
theory [3,5,15] and Perron-Frobenius theory of positive
matrices [22,23], it is known that for feasible targets in (1)
Vk the corresponding power vector can be computed as

p=[0-TV]7lrz (4)

Since the power resources are limited in the network,
any feasible vector p given by (4) must lie within a feasible
region limited by a given set of constraints. Let us define
the region of feasible powers considering IPC as

PC.={peRf, :p <p} (5)
and the region of feasible powers considering TPC as
PIC = (p e RE, :[Iplh < P1), (6)

where K = |K] is the cardinality of the subset of links
that can be jointly supported K < K and K is the set
of all available links. We need to solve the following rate

maximization problem over the set of feasible links C con-
strained in the joint continuous power and discrete target
regions:

Maximize Z R(SINRg(p)) 7)
kek, KSK

subject to vk € M, Vk e K
peP,

where R(SINR(p)) is the achievable rate associated with
a given SINR and P can be given either by (5) or (6),
depending on the specific network requirements. As the
elements of y can only take values from a finite set M, (7)
is a combinatorial problem whose complexity depends on
the size of M and the number of elements in K.

4 Joint scheduling and resource allocation

Finding a solution to problem (7) requires the optimiza-
tion over the set of feasible links that can transmit simul-
taneously (user selection) and their respective feasible
modulations (and their associated powers). An exhaustive
search algorithm attempting to solve problem (7) would
require to test all the combinations of links and target
vectors. The associated search space Qg ; has a size of

(M + 1)IFI — 1, where several configurations of links sets
and target vectors are infeasible.

Since looking for the optimal solution in Qg , is
extremely complex, we introduce iterative algorithms
that find a suboptimal solution to problem (7) using two
different approaches. On the one hand, we use the Perron-
Frobenius theory to reformulate the sum rate maximiza-
tion problem as an eigenvalue optimization problem. On
the other hand, we design alternative algorithms that ver-
ify the resource feasibility using information provided by
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the power consumption or the achievable SINR so that
the eigenvalue computations are avoided. The fundamen-
tal concept behind the presented algorithms is to find in
each iteration, the link k* or its associated y+ and py+
that conditions the most the resource allocation feasibil-
ity. The algorithms make decisions in two phases. In the
first phase, the fulfillment of the feasibility conditions is
verified. If the feasibility conditions are violated, the sec-
ond phase is in charge of finding k* and modifying the
set of active links /C or the target vector y based on the
information that k* provides.

In the algorithms, we adopt the notation E(k, X,
V,z,p,y) to indicate a drop event of the link &, and the
consequent actions follow: K = K — {k}, V. = VI,
y =y, 2 =20, p = plt and y; = y"=M v; ¢ K.
The vector p condenses a given set of constraints and is
defined as
. [pifP="PC

= { p P = IPTC’ (8)

where p is a power vector that distributes equally the total
available power among all links, ie,p, = P, /|IK|,Vk € K.

4.1 Perron-Frobenius root-based optimization

The feasible vector of targets that maximize the sum rate
in (7) must be in the boundary of the feasible SINR tar-
get region, and in order to characterize such region, a
condition for feasibility of the targets is required. From
the Perron-Frobenius theory [22,23], for a positive square
matrix A, the PF-root p(A) and its associated right eigen-
vector x meet Ax < x, if and only if p(A) < 1. There
is a direct relation between this property and the math-
ematical representation of the coupled targets in B. In
our context, this means that the SINR targets are jointly
achievable if and only if the following necessary and suf-
ficient condition for feasibility is met ([5], Theorem 5.68
and Corollary 5.69):

p(B) < 1. )

Fulfilling condition (9) implies that interference in the
system can be mitigated by power control, i.e., the SINR
targets are feasible and (1) holds with equality. Further-
more, the power allocation vector p given by (4) equals the
right eigenvector associated with p(B) [5]. Let us consider
the case of TPC where the feasible region of targets can be
defined as follows:

QT = (yy =y e M,Vk e K: p(B) <1}. (10)

Figure 2 illustrates the feasible region QT which is the
intersection of sublevel sets of the spectral radii of all non-
negative irreducible matrices B [5] taking into account
TPC. The region QTC can be completely characterized
from its boundary since it is downward comprehensive
[5], which means that any y on the boundary of QT¢
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defines a set of target vectors that are within the feasi-
ble SINR target region. However, we are interested on the
point in QTC that maximizes the sum rate, which implies
that the target vector that solves problem (7) must lie in
the boundary of Q€.

The maximization problem can be reformulated as a PF-
root optimization over the matrix B since the feasibility of
the targets is given by condition (9). Assuming TPC, the
original problem (7) can be rewritten as

> Ryl

kek,Kck
subjectto y € QTC,

Maximize (11)

where the constraint in (11) absorbs both constraints in
(7). A similar reformulation of (7) applies when IPC (5) is
considered [24].

In order to solve problem (11), it is required to iden-
tify which link violates the most the feasible conditions.
From the theory of irreducible matrices, it is known that
if A is an irreducible square matrix and A/l is a proper
principal submatrix of A, then p(AKl) < p(A) [22,23]. In
the context of user removal [11], this property is funda-
mental to determine the link that must be dropped since
it relates the most infeasible link to the minimum PF-
root over all principal submatrices of B. In our context,
the link k* that compromises the most the resource fea-
sibility is the one whose o (B%]) is minimum. The fastest
fulfillment of condition (9) is achieved whether k* is tem-
porarily disconnected or its associated y;« is relaxed so
that the PF-root of the matrix B is minimized.

The algorithm starts by defining the initial conditions
of the targets as y, = y "=, vk e K which may or
may not be a feasible starting point and is the maximum
available target established by a given set M. The feasi-
bility of the target vector is verified by the condition (9);
if y € QTC, then the algorithm stops, and all links in
transmit simultaneously with the powers defined by (4). If
y is infeasible, a relaxation of the SINR targets is required,
and in the current iteration, the algorithm modifies only
the component [y ]+, where the most infeasible link k* is
computed as [11]

k* = argmax

(5am)
ke \ p(BIK )~

For the next iteration, the link k* reduces its target index
by one unit m+ = my+ — 1, and its new SINR target is set
to yg = y %), In the case where link k* cannot reduce
its minimum target, it is classified as infeasible or use-
less. Assigning any positive power to this link will create
interference to the other links without achieving the mini-
mum required SINR. At this point, the set of feasible links

(12)
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must be reduced so that = K — {k*}, and without the
useless link, the algorithms attempt to allocate the max-
imum target for the remaining users, m; = M,Vk € K.
The steps performed to solve problem (11) are given in
Algorithm 1.

The maximum number of iterations required for
Algorithm 1 to stop is upper-bounded by (ZE'I((M —
1)i+1))—1, which depends on the the number of available
MCSs in M and the size of the initial set of links K.

Algorithm 1 PF-root optimization
1: Set initial values: K = IC, y = y "%=M vk e K.
2 if y € Q7C by (9) then
3. Set final vector p by (4), , and Stop.

4: else

5. Compute k* by (12)

6: if my« > 1 then

7: mys = myr — 1, ype = y "), Go to Step 2.
8. else

9: E*IC,V,z,p,¥), Go to Step 2.
10  end if
11: end if

4.2 Power consumption and target-to-SINR ratio-based
optimization

In order to solve problem (7) using the tools provided by
the Perron-Frobenius theory, it is required to optimize the
PF-root of the matrix B. In each iteration of Algorithm 1,
finding the worst link k* requires |KC| eigenvalue compu-
tations. If IPCs (5) are imposed, finding k* would require
(IK|?> — |K[) PE-root evaluations per iteration [24]. More-
over, the criterion used to evaluate the feasibility of the
resource allocation, i.e. condition (9), is also based on the
PF-root computation.

We design an alternative algorithm where the infea-
sibility of y is determined through the characteristics
of p. In [1], it was shown that if the targets are feasi-
ble, the link that consumes more power is the one that
maximizes the PF-root in condition (9). The link with
maximum power requirements compromises the most the
resource feasibility. In order to identify the link &* that
has the maximum demand of power, we define an algo-
rithm that exploits the characteristics of the power vector
computed by the distributed power control (DPC) algo-
rithm [17]. DPC has been used as part of algorithms that
find the optimum power allocation in scenarios where
y € Rl_ﬂ is a feasible target vector (e.g., [1,15]). It has
been proved that DPC is a fixed point algorithm [13] that
converges to the optimum unique p if and only if p is
feasible.

If the SINR targets y are infeasible, then the PF-root
of the matrix T'V will be greater than 1. Under such
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conditions, for a large number of iterations (¢) of the DPC
algorithm, the powers are approximated as follows [20]

p(t) ~ p(TV)'Cx, (13)
where x is the right eigenvector associated with p(I'V)
and C is a constant depending on the initial vector p(t =
1) and the coupling matrix V. The power vector goes to
infinity as the number of iterations () increases due to the
fact that p(I'V) > 1. As our objective is to allocate the
maximum SINR target for all links (y;x = D, Vk), this
initial conditions may not be feasible, leading to (13). This
implies that we cannot use directly the power vector found
by DPC to select the link that consumes more power. Nev-
ertheless, if the powers are normalized in each iteration
so that ||p(¢)|l1 = 1, then it can be found within a finite
number of iterations 7, a link k* whose associated power is
maximum, i.e., pg+(t) > pi(7), Yk # k*. If feasibility con-
ditions are violated, we modified either the set of active
links K or the target yy+ so that the power consumption
of k* is reduced in the next iteration. The initial condi-
tions ¢ = 1 of the vector of normalized powers p of the
DPC algorithm are given by the constrained power vector
in (8), i.e., p(1) = p. The DPC algorithm with normalized
powers is described in Subalgorithm 1:

Subalgorithm 1 DPC algorithm with normalized
powers

1: repeat

2 pt+1)=TVp®) +z

3 P+ 1) =p+1D/Ip+Dlh

4 until |[p(t+1) —p@)|1 <cort<rt

After Subalgorithm 1 has finished, the link that provides
more information about resource feasibility is given by the
maximum element in the normalized power vector p:

k* = arg max py. 14
gmax pi (14)

The power vector found by (14) does not consider the
power constraints (5) or (6), and they are taken into
account once there exists a power vector defined by (4)

such that p € Rlﬁr, which corresponds to a feasible target
allocation where no power constraints are imposed. Once

Table 1 Set of available SINR targets M (dB) and its
associated R (bps/Hz)

Index m 1 2 3 4 5 6 7 8
o —-32 18 50 72 112 148 190 228
R(y™M) 0333 1 15 2 3 4 514 64
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p > 0, the criterion to select the link k* considering the
power constraints is given by

argmin (px — pr)/px if P = PIC,
kel

k= if P = PTC,

arg max (15)
g s Pk

where for IPC, k* indicates which link consumes more
power regarding its individual power constraint. Finding
the infeasible link k* using the DPC implies a two-time
scale algorithm, and there are two processes of optimiza-
tion over the vector of powers: the first one is finding
a p whose components are in R, and the second is
adjusting p according the power constraints.

An alternative form to find k* instead of using power
consumption, i.e. (14) and (15), is achieved using a met-
ric that takes into account the power constraints of each
iteration. For a given set KC and its respective y and p,
we want to determine how far the achievable SINR of
each link regarding its associated target is. In pursuance of
measuring such a distance, let us define the function that
computes the target-to-SINR ratio (yx/SINRy) for the kth
link as

iy, V,2,p) = 71k ([VPIk +zlx) '
(pl«

In order to maximize the total sum rate, the initial
conditions of the SINR targets are set to the maximum
modulation available, y; = y =M vk e K. If for such
y the power vector p computed by (4) is in the feasible
power region P, then p is feasible. Otherwise, the link k*
with the worst target-to-SINR ratio is given by

k* = argmax Yy (y,V,zp), (16)
kekC

where p is given by (8). The steps performed to solve the
problem (7) using both the minimum power consump-
tion approach (14) and (15) or the target-to-SINR ratio
approach (16) are described in Algorithm 2.

Algorithm 2 Power consumption and target-to-SINR
ratio-based optimization

1: Set initial values: K = K, y; = y "%=M Vik € K.
2: Evaluate p by (4)

3:if pe Rﬁ then

4. if p € P then

5: Set final vectors p, y, and Stop.

6: else

7: Compute k* by (15) or (16), Go to Step 11.
8 endif

9: else
10:  Compute k* by (14) or (16)
11:  if my+ > 1 then
12: Mix = Mjx — 1, Y= = )/(mk*), Go to Step 2.
13:  else
14: E(k*, I, V,z,p,y), Go to Step 2.
15:  endif
16: end if

4.3 SINR target increment-based optimization

The objective of Algorithms 1 and 2 is to reach a point y
in the region of targets (10), ideally on its boundary. Both
approaches start with initial conditions that may or may
not be out of the feasible region of targets. The number of
iterations required for the algorithms to converge depends
on the channel instance. When the channel conditions are
not favorable, many links will achieve low SINR, which
implies that the number of iterations required for the
algorithms to converge would be large. In order to find
a faster way to compute the solution of problem (7), we
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introduce an algorithm that operates in two stages: in the
first stage, it finds a target vector y inside the feasible tar-
get region; in the second stage, it attempts to reach the
closest point to the boundary of the feasible target region
from inside out by tightening up the SINR requirements
of specific links.

Let us define T as the matrix of achievable SINR targets
under a given set of power constraints p (8) as follows:

I = [diag(Vp + z)] Y diag(p). (17)

Since the elements of the diagonal of T take values in R,
it is necessary to adjust such values to be in the set M of
available SINR targets. The appropriate target value of the
kth link lies in one of the SINR target ranges defined by
M= {yD,y@, . y*}25]:

(Wl), (Wl-‘rl)).

vk €ly™,y

Therefore, the adjusted target of the kth link over its
target interval is defined as

Pk = min{y ",y "Dy, (18)

where the target yi is related to the highest spectral effi-
ciency, i.e., the rate of the selected target (MCS) is the
closest but below the achievable capacity of the SINR pj
[4,25]. The values of the achievable SINR targets from (17)
are adjusted by (18), and the links whose adjusted y are
not in the set of available targets M are dropped. Notice
that the computation of T uses the maximum available
power vector p, and this lack of power control may discard
feasible links that could be scheduled.

Once a target vector y with all its elements in M and
its associated power vector p € P have been reached, the
set IC remains fixed and the first stage is completed. The
second stage is focused on tightening up the components
of ¥ in order to maximize the final sum rate maintain-
ing resource feasibility. The problem of target increment
for a fixed subset of links was addressed in [24] using a
criterion derived from the Perron-Frobenius theory. This
criterion is used to define the candidate link k* that can
increase its SINR target, and it requires the evaluation of
the PF-root of B. In order to avoid the eigenvalue com-
putation, a suboptimal criterion based on the minimum
power consumption is used instead. This is intuitive since
¥ and its associated power vector are feasible, and the lat-
ter can be used to decide which link can increase its power
consumption. The link k* candidate to tighten up its SINR
target is given by

argmax (P — pr)/px ifP = pIC,
kekC
if P = PTC.

*_

arg min (19)
g P Pk

The steps performed to solve problem (7) using this
approach are described in Algorithm 3. Notice that more
than one link can be discarded in steps 3 and 4, and still,
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I' is not guaranteed to be feasible. In such a case and in
order to reduce outage, steps 21 and 22 are used to drop
only one extra link whose associated adjusted target y is
minimum.

Algorithm 3 Target increment-based optimization

L SetKk =K

2: Compute r by (17) and ¥k by (18)

3: ’C,Z{k:)'/'k¢/\/t}

4 B(K,K,V,z,p,¥), VK € K

5: Compute p by substituting I' = diag(3) in (4)
6: if p € P then

7. Define K"P? = K

8:  Compute k* over K by (19)

9:  if myx < M then

00 = e + Ly = 5, [y = y kD
11: Compute p”? by using T = diag(y™) in (4)
12: if p” e P then

13: Set = pP, Go to Step 8.

14: else

15: Set y = ¥, compute p by (4), Stop.

16: end if

17:  else

18: KCtmp = [P — (k*}, Go to Step 8.

19:  end if
20: else

' ot

21 k* = min 20
22: E(k*,K,V,z,p, ), Go to Sep 2.
23: end if

5 Numerical results

5.1 Examples of the MCS selection

In this subsection, two illustrative examples of how
the algorithms select the MCSs are presented. For the
first example, consider the two-link system depicted in
Figure 1a. The channel gains are given as G1; = 0.8791,
G2 = 0.3999, Gy; = 0.0211, and Gop = 0.8791, the power
constraint is P; = 1.4; the noise power is 012 = 022 =102,
and the set of available SINR targets (M) is defined in
Table 1 [25].

Figure 3 shows the evolution of the proposed algorithms
over the region of available targets for a scenario with two
links considering TPC (6). The starting point y; =
is infeasible for Algorithms 1 and 2, and the feasible target
vectors are found by different paths. The algorithms stop
oncep € PTCory e QTC.

For the second example, we consider a scenario with
seven active links and TPC (6) is imposed. Figure 4 shows
the evolution of the algorithms for one link k. Since
Algorithms 1 and 2 start in the maximum available SINR
target, only target relaxation is performed. However, it is
possible that their curves go up and reach the maximum
SINR target value. This is an indicator of the drop of an
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infeasible link and the attempt of the algorithms to allo-
cate the maximum SINR target to the remaining users. In
this particular case, Algorithm 2 using either (14) and (15)
or (16) has one dropping event, whilst Algorithm 1 finds a
feasible y for all links in K. This means that the final solu-
tion of the algorithms may differ in the number of active
links. Algorithm 3 starts from a given target value, and its
objective is to increase such target as much as possible.

5.2 Distributed antenna scenario

In order to assess the algorithms, we consider a distribu-
ted antenna system (DAS) scenario as the one depicted
in Figure 1b. In DAS, the remote antenna units (RAUs)
are geographically separated and connected by a dedi-
cated link to a central unit where processing is jointly
performed. These type of access interfaces are based on
the concept of space diversity and cell splitting in order to
improve coverage and spectral efficiency. The deployment
of the distributed antennas consists of N RAUs: one at the
center of the cell and N — 1 distributed RAUs uniformly
deployed at a distance of % the cell radius from the cell
center. We consider that the RAUs are coordinated only
to control their transmit powers, and no signal process-
ing is used (e.g., beamforming). The channels are modeled
as Rayleigh fading and are affected by a path loss com-
ponent and a shadowing fading component modeled as a
log-normal distributed variable with parameter s, .

There are U users uniformly deployed in the cell and
U > N. Therefore, it is necessary to select the initial
subset of links K by assigning a different user to each
RAU according to some performance criterion. In order
to avoid the extremely complex combinatorial problem of
selecting the optimum subset of users K with cardinality
equal to N out of U users, we propose to use a suboptimal
RAU-user matching algorithm inspired by [26]. This algo-
rithm combines two forms of selection over all possible

RAU-user pairs: a greedy and a minimum-throughput-
loss selection. The algorithm assigns one different user to
each RAU deployed within the cell, defining in this way
the initial set of links C. Once that all the RAU-user links
have been established, the proposed algorithms find the
final subset of feasible links /C and allocate powers and
rates. The set of available targets M is the one presented
in Table 1. Results are generated by averaging 10 x 10°
channel instances for each value of U, and the simulation
parameters are listed in Table 2.

5.2.1 Performance evaluation: sum rate and outage
probability

In order to assess the performance of the algorithms, we
use the statistics of the sum rate and outage probability
for different DAS scenarios and both sets of power con-
straints IPC (5) and TPC (6). In the figures, the results
that correspond to Algorithm 1 when IPC (5) is consid-
ered, are computed by the Algorithm 1 presented in [24].

Table 2 Simulation parameters

Parameters Values

Cell radius 900 m
Carrier frequency 2.5GHz
Channel bandwidth 20 MHz
Thermal noise power density —174 dBm/Hz
UE noise figure 7dB

Path loss model UMi-LoS [27]
Shadow fading standard deviation Sg =

User deployment Uniform
Available MCS (M) 8[25]
Maximum number of iterations ¢ 50
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The outage probability has been used as a metric to evalu-
ate the performance of different power control algorithms,
and it can be defined as the ratio between the number
of dropped links to the total number of links [11]. The
phenomenon of multiple users experiencing independent
fading channels is known as multiuser diversity (MUD)
[25]. As U grows, the channel conditions of the users
attached to the RAUs are improved and interference can
be mitigated more efficiently. Figures 5 and 6 show the
total sum rate as a function of the total number of users U
considering N = 7.

Let us analyze two particular cases of U. For the first
case, consider Y = N = 7, where in Figure 5, the

achieved sum rate of the three algorithms is similar when
TPC (6) is imposed. The sum rate maximization via PF-
root optimization in Algorithm 1 identifies with more
accuracy which link must relax its target, which results
in an extra gain of 0.73 bps/Hz compared to the other
approaches. Algorithm 3 achieves the same performance
of Algorithm 2 since it allocates higher MCSs to its links.
However, its performance in terms of outage probability
is worst than the other approaches since it may discard
feasible links in its first stage. In Figure 6, IPC (5) is con-
sidered, and the performance of Algorithms 3 and 2 via
(16) are outperformed by Algorithm 2 via (14) and (15),
which indicates that when individual power constraints
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Figure 6 Sum rate vs number of users (IPC). Total sum rate as a function of MUD (U) for N = 7, M = 8, with p1 = 39 dBm for the central RAU, and

pj = 33 dBm forVj # 1, the rest of the RAUs.
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are imposed, target relaxation based on power consump-
tion achieves an extra gain of 0.95 bps/Hz compared to the
optimization based on the target-to-SINR ratio.

The second case of analysis, / = 70 > N, provides a
rich MUD, and the performance of all algorithms reaches
similar values of the sum rate for both sets of power
constraints. This means that under favorable channel con-
ditions, finding an acceptable solution to problem (7) can
be achieved with the low complex Algorithms 2 and 3,
avoiding the PF-root optimization.

The outage probability results are displayed in Figures 7
and 8 for TPC and IPC, respectively. If TPC is considered,
Algorithm 2 has a marginal gap of outage probability

compared to Algorithm 1. In contrast, if IPC is imposed,
only Algorithm 2 using (14) and (15) achieves an outage
probability close to the one of Algorithm 1. In spite of
the sum rate achieved by Algorithm 3, it suffers from a
larger outage compared to the other schemes. The main
advantage of Algorithm 3 is that the number of required
iterations for convergence is considerably less compared
to the other approaches. Figure 9 shows the average num-
ber of iterations required by the algorithms to converge
for IPC, and similar results are obtained for TPC. If the
number of users in the cell is low U = N, it means that
the N RAUs must serve users with worst channel condi-
tions compared to the case where U > N. In other words,

Outage probability
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Figure 8 Outage probability vs number of users (IPC). Total sum rate as a function of the MUD (U) for N = 7, M = 8, with p; = 39 dBm for the
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when channel conditions are poor, the feasible target
region contains few feasible target vectors, making Algo-
rithms 1 and 2 to require more iteration to find a solution
to problem (7). This phenomenon can be observed in the
two-link scenario in Figure 3, where if the feasible region
is small, the number of iterations to reach its boundary is
larger.

5.2.2 Optimal joint link selection and resource allocation
In order to quantify the sum rate gap between the pro-
posed algorithms and the optimal solution of problem (7),

optimal solution is found by exhaustive search. For this
particular case, the search space contains [€2);¢|_4 y—g| =
6,560 combinations. Figures 10 and 11 show the cumu-
lative distribution function of the sum rate considering
TPC and IPC, respectively. Algorithms 1 and 2 look for
the maximum SINR target vector closer to the boundary
of region of feasible targets (10). The target vector y found
by both approaches is not necessarily the same size of the
optimal one y*. We have |y*| < |y| since the optimum
solution maximizes the sum rate over all combinations in
Qj p» and in Algorithms 1 and 2, the stop criteria are

we use a scenario with N = 4 and U = 10, and the triggered once a feasible y or p has been found. It turns
10° . . .
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out that such criterion to stop the algorithms maximizes
the cardinality of the final set K. The optimum solution
of problem (7) will present a larger outage specially when
U ~ N [24].

5.2.3 Performance evaluation for the low-high SINR regimes
The transition from a noise-limited system to an
interference-limited system with N = 7and U = 14 is
displayed in Figures 12 and 13 for TPC and IPC, respec-
tively. For IPC, the central RAU has a power constraint
p1 given by the abscissa, and the distributed nodes have

bj 0.6p1,Vj # 1 in watts. For both sets of power
constraints, Algorithms 1 and 2 obtain the same outage
probability when the system is noise limited. For systems
that operate with low transmission powers, the resource
allocation process can be given by Algorithm 2 since its
complexity is low compared to Algorithm 1 and its outage
performance is similar. When the system is interference
limited, the outage probability gap between Algorithms 1
and 2 is significant. Nevertheless, Algorithms 2 and 3
are an alternative to the PF-root optimization approach.
Notice that in the interference-limited scenario, the rate is

Outage probability

K LN

Alg. 1 j
Alg. 2 (14)(15) |]
Alg. 2 (16)

M=8.

19

Transmit Power [dBm]

22 25

Figure 12 Outage probability vs transmit power (TPC). Outage probability as a function of the constrained transmit power P; for N = 7 and
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upper-bounded by the rate associated with the maximum
target (MCS) in M, specially when there are favorable
channel conditions, e.g, / = 70 in Figures 5 and 6.

5.2.4 Application for user removal

The proposed algorithms have the potential to be used
as removal algorithms in the context used in [11], i.e.,
all links in K have the same unique fixed target and the
objective is to find the subset I with the links that can
be simultaneously scheduled. This can be achieved by
making M = {y} for any fixed m, which is a partic-
ular case of our algorithms. Figure 14 shows the outage

probability when a unique fixed target is considered. For
this particular case, Algorithm 1 reduces to the Removal
Algorithm III-A in [11]. It is worthy to point out that
for TPC, Algorithm 2 is a low complex alternative to the
Removal Algorithm III-A [11] which was claimed to be
the unique solver for the case where TPC (6) is imposed.
The performance of the algorithms is compared to the
optimal removal. The outage probability gap between
Algorithm 2 and the optimal removal is negligible for low
values of the fixed target. For large values of the fixed
target, this gap reflects the inaccuracy of Algorithm 2
when selecting the worst link in K either by the power
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Figure 14 Outage probability vs fixed target (TPC). Outage probability considering a single fixed target for all links with N = 7 and P; = 28.5 dBm.
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consumption or by the target-to-SINR ratio criterion.
However, this gap is compensated by the low complex-
ity involved in the user-removal process. The curve from
Algorithm 3 is a clear example of what is the expected out-
age when more than one link is discarded per iteration.
Similar results to Figure 14 are achieved when IPC (5) is
considered.

6 Conclusions

In this paper, we present different algorithms to solve
the sum rate maximization problem in interference-
coupled wireless networks. This problem has a combi-
natorial nature since the SINRs are constrained to take
values from a finite set. The algorithms find a set of
links for which exists a feasible resource allocation that
maximizes the sum rate. The presented algorithms are
based on the criteria derived from the Perron-Frobenius
theory or derived from the implicit information con-
tained in the power consumption or achievable SINR.
In addition, we present a low-complexity fast algorithm
for link selection and resource allocation which con-
verges in few iterations, and its robustness allows us to
achieve acceptable performance under favorable channel
conditions.

Numerical results show how our algorithms achieve
a good tradeoff between complexity and accuracy com-
pared to the optimal solution. Moreover, our results show
that the low-complexity algorithms that avoid the PF-
root computations are suitable for scenarios with favor-
able channel conditions (e.g., rich MUD). In such sce-
narios, their sum rate performance is similar to the one
achieved by approaches depending on the eigenvalue
computation.

Furthermore, we show that our proposed algorithms
can be used for user removal under different sets of
power constraints whose performance is close to the one
achieved by state-of-the-art algorithms but with signifi-
cant reduction on complexity. A secondary application of
our algorithms is to group users for time-sharing schedul-
ing where transmission is provided only to useful users
that can be jointly supported whilst useless users can be
served in a later time slot or handed to another channel or
base station.
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