U Khan, S Agrawal, S Silakari, in Information Systems Design and Intelligent Applications. A detailed survey on misbehavior node detection techniques in vehicular ad hoc networks. (Springer, 2015), pp. 11–19.
S Al-Sultan, MM Al-Doori, AH Al-Bayatti, H Zedan, A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl.37:, 380–392 (2014).
Article
Google Scholar
K Zaidi, M Milojevic, V Rakocevic, M Rajarajan, in 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications. Data-centric rogue node detection in vanets. (IEEE, 2014), pp. 398–405.
F Qu, F-Y Wang, L Yang, Intelligent transportation spaces: vehicles, traffic, communications, and beyond. 48(11) (2010).
N Ilyas, M Akbar, R Ullah, M Khalid, A Arif, A Hafeez, U Qasim, ZA Khan, N Javaid, Sedg: scalable and efficient data gathering routing protocol for underwater WSNS. Procedia Comput. Sci.52:, 584–591 (2015).
Article
Google Scholar
F Ghaleb, A Zainal, M Rassam, Data verification and misbehavior detection in vehicular ad-hoc networks. J. Teknologi. 73(2), 37–44 (2015).
Google Scholar
S Ruj, MA Cavenaghi, Z Huang, A Nayak, I Stojmenovic, in Vehicular Technology Conference (VTC Fall), 2011 IEEE. On data-centric misbehavior detection in vanets. (IEEE, 2011), pp. 1–5.
X Shen, X Cheng, L Yang, R Zhang, B Jiao, Data dissemination in vanets: a scheduling approach. IEEE Trans. Intell. Transp. Syst.15(5), 2213–2223 (2014).
Article
Google Scholar
J Molina-Gil, P Caballero-Gil, C Caballero-Gil, Countermeasures to prevent misbehaviour in VANETs. J. UCS. 18(6), 857–873 (2012).
Google Scholar
M Khalid, Z Ullah, N Ahmad, H Khan, HS Cruickshank, OU Khan, in Recent Trends in Telecommunications Research (RTTR), Workshop On. A comparative simulation based analysis of location based routing protocols in underwater wireless sensor networks (IEEE, 2017), pp. 1–5.
N Bißmeyer, J Njeukam, J Petit, KM Bayarou, in Proceedings of the Ninth ACM International Workshop on Vehicular Inter-networking, Systems, and Applications. Central misbehavior evaluation for vanets based on mobility data plausibility. (ACM, 2012), pp. 73–82.
M Khalid, Z Ullah, N Ahmad, A Adnan, W Khalid, A Ashfaq, Comparison of localization free routing protocols in underwater wireless sensor networks. Int. J. Adv. Comput. Sci. Appl.8(3), 408–414 (2017).
Google Scholar
T Qiu, D Luo, F Xia, N Deonauth, W Si, A Tolba, A greedy model with small world for improving the robustness of heterogeneous internet of things. Comput. Netw.101:, 127–143 (2016).
Article
Google Scholar
X Cheng, C Chen, W Zhang, Y Yang, 5g-enabled cooperative intelligent vehicular (5genciv) framework: when benz meets marconi. IEEE Intell. Syst.32(3), 53–59 (2017).
Article
Google Scholar
J Grover, MS Gaur, V Laxmi, RK Tiwari, in Proceedings of the Fifth International Conference on Security of Information and Networks. Detection of incorrect position information using speed and time span verification in vanet. (ACM, 2012), pp. 53–59.
T Leinmuller, RK Schmidt, E Schoch, A Held, G Schafer, in GLOBECOM Workshops, 2008 IEEE. Modeling roadside attacker behavior in VANETs (IEEE, 2008), pp. 1–10.
J Grover, MS Gaur, V Laxmi, in Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International. Position forging attacks in vehicular ad hoc networks: implementation, impact and detection. (IEEE, 2011), pp. 701–706.
G Yan, S Olariu, MC Weigle, Providing VANET security through active position detection. Comput. Commun.31(12), 2883–2897 (2008).
Article
Google Scholar
T Leinmuller, E Schoch, F Kargl, Position verification approaches for vehicular ad hoc networks. IEEE Wireless Commun.13(5) (2006).
K Penna, V Yalavarthi, H Fu, Y Zhu, in Neural Networks (IJCNN), 2014 International Joint Conference On. Evaluation of active position detection in vehicular ad hoc networks (IEEE, 2014), pp. 2234–2239.
M Raya, J-P Hubaux, Securing vehicular ad hoc networks. J. Comput. Secur.15(1), 39–68 (2007).
Article
Google Scholar
RW Van der Heijden, F Kargl, OM Abu-Sharkh, A Al-Momani, in IEEE Vehicular Technology Conference. Enhanced position verification for vanets using subjective logic. (Universität Ulm, 2016).
SK Harit, G Singh, N Tyagi, in Computer and Communication Technology (ICCCT), 2012 Third International Conference On. Fox-hole model for data-centric misbehaviour detection in vanets. (IEEE, 2012), pp. 271–277.
MN Mejri, J Ben-Othman, M Hamdi, Survey on VANET security challenges and possible cryptographic solutions. Veh. Commun.1(2), 53–66 (2014).
Article
Google Scholar
R Zhang, X Cheng, Q Yao, C-X Wang, Y Yang, B Jiao, Interference graph-based resource-sharing schemes for vehicular networks. IEEE Trans. Veh. Technol.62(8), 4028–4039 (2013).
Article
Google Scholar
X Cheng, Q Yao, M Wen, C-X Wang, L-Y Song, B-L Jiao, Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE J. Selected Areas Commun.31(9), 434–448 (2013).
Article
Google Scholar
B Mishra, P Nayak, S Behera, D Jena, in Proceedings of the 2011 International Conference on Communication, Computing & Security. Security in vehicular adhoc networks: a survey. (ACM, 2011), pp. 590–595.
BK Chaurasia, S Verma, GS Tomar, in Communication Systems and Network Technologies (CSNT), 2013 International Conference On. Trust computation in vanets. (IEEE, 2013), pp. 468–471.
X Cheng, L Yang, X Shen, D2d for intelligent transportation systems: a feasibility study. IEEE Trans. Intell. Transp. Syst.16(4), 1784–1793 (2015).
Article
Google Scholar
M Altayeb, I Mahgoub, A survey of vehicular ad hoc networks routing protocols. Int. J. Innov. Appl. Stud.3(3), 829–846 (2013).
Google Scholar
Z Huang, On reputation and data-centric misbehavior detection mechanisms for VANET. PhD thesis (2011).
M Khalid, Z Ullah, N Ahmad, M Arshad, B Jan, Y Cao, A Adnan, A survey of routing issues and associated protocols in underwater wireless sensor networks. J. Sensors, 7539751 (2017).
R Zhang, X Cheng, L Yang, X Shen, B Jiao, A novel centralized tdma-based scheduling protocol for vehicular networks. IEEE Trans. Intell. Transp. Syst.16(1), 411–416 (2015).
Article
Google Scholar
X Cheng, C-X Wang, DI Laurenson, S Salous, AV Vasilakos, An adaptive geometry-based stochastic model for non-isotropic mimo mobile-to-mobile channels. IEEE Trans. Wireless Commun. 8(9) (2009).
F Zeng, R Zhang, X Cheng, L Yang, Channel prediction based scheduling for data dissemination in vanets. IEEE Commun. Lett, 1409–1412 (2017).
L Zhang, Q Wu, A Solanas, J Domingo-Ferrer, A scalable robust authentication protocol for secure vehicular communications. IEEE Trans. Veh. Technol.59(4), 1606–1617 (2010).
Article
Google Scholar
T Leinmuller, E Schoch, C Maihofer, in Wireless on Demand Network Systems and Services, 2007. WONS’07. Fourth Annual Conference On. Security requirements and solution concepts in vehicular ad hoc networks. (IEEE, 2007), pp. 84–91.
A Wasef, X Shen, in Communications (ICC), 2010 IEEE International Conference On. Efficient group signature scheme supporting batch verification for securing vehicular networks. (IEEE, 2010), pp. 1–5.
X Cheng, C-X Wang, B Ai, H Aggoune, Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle ricean fading channels. IEEE Trans. Intell. Transp. Syst.15(1), 62–72 (2014).
Article
Google Scholar
X Cheng, C-X Wang, DI Laurenson, S Salous, AV Vasilakos, New deterministic and stochastic simulation models for non-isotropic scattering mobile-to-mobile rayleigh fading channels. Wireless Commun. Mobile Comput.11(7), 829–842 (2011).
Article
Google Scholar
Y Qian, N Moayeri, in Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE. Design of secure and application-oriented vanets. (IEEE, 2008), pp. 2794–2799.
A-E Mihaita, C Dobre, F Pop, CX Mavromoustakis, G Mastorakis, in Advances in Mobile Cloud Computing and Big Data in the 5G Era. Secure opportunistic vehicle-to-vehicle communication. (Springer, 2017), pp. 229–268.
RG Engoulou, M Bellaïche, S Pierre, A Quintero, Vanet security surveys. Comput. Commun.44:, 1–13 (2014).
Article
Google Scholar
X Lin, X Sun, P-H Ho, X Shen, GSIS: a secure and privacy-preserving protocol for vehicular communications. IEEE Trans. Veh. Technol.56(6), 3442–3456 (2007).
Article
Google Scholar
M Tilal, R Minhas, Effects of Jamming on IEEE 802.11 p Systems (2010).
J Sun, Y Fang, in Military Communications Conference, 2008. MILCOM 2008. IEEE. A defense technique against misbehavior in vanets based on threshold authentication. (IEEE, 2008), pp. 1–7.
S Zeadally, R Hunt, Y-S Chen, A Irwin, A Hassan, Vehicular ad hoc networks (vanets): status, results, and challenges. Telecommun. Syst.50(4), 217–241 (2012).
Article
Google Scholar
B Pooja, MM Pai, RM Pai, N Ajam, J Mouzna, in Computer Aided System Engineering (APCASE), 2014 Asia-Pacific Conference On. Mitigation of insider and outsider dos attack against signature based authentication in vanets. (IEEE, 2014), pp. 152–157.
S Jiang, X Zhu, L Wang, An efficient anonymous batch authentication scheme based on HMAC for VANETs. IEEE Trans. Intell. Transp. Syst.17(8), 2193–2204 (2016).
Article
Google Scholar
K Zaidi, M Rajarajan, Vehicular internet: security & privacy challenges and opportunities. Future Internet. 7(3), 257–275 (2015).
Article
Google Scholar
N Ahmad, H Cruickshank, Z Sun, M Asif, in Privacy, Security and Trust (PST), 2011 Ninth Annual International Conference On. Pseudonymised communication in delay tolerant networks. (IEEE, 2011), pp. 1–6.
M Azees, P Vijayakumar, LJ Deboarh, Eaap: Efficient anonymous authentication with conditional privacy-preserving scheme for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst., 2467–2476 (2017).
J Freudiger, M Raya, M Félegyházi, P Papadimitratos, J-P Hubaux, in ACM Workshop on Wireless Networking for Intelligent Transportation Systems (WiN-ITS). Mix-zones for location privacy in vehicular networks, (2007).
F Qu, Z Wu, F-Y Wang, W Cho, A security and privacy review of VANETs. IEEE Trans. Intell. Transp. Syst.16(6), 2985–2996 (2015).
Article
Google Scholar
R van der Heijden, S Dietzel, F Kargl, Misbehavior detection in vehicular ad-hoc networks (Proceedings of the 1st GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC 2013), 2013).
RW van der Heijden, S Dietzel, T Leinmüller, F Kargl, Survey on misbehavior detection in cooperative intelligent transportation systems (2016). arXiv preprint arXiv:1610.06810.
A Daeinabi, AG Rahbar, Detection of malicious vehicles (DMV) through monitoring in vehicular ad-hoc networks. Multimedia Tools Appl.66(2), 325–338 (2013).
Article
Google Scholar
N-W Lo, H-C Tsai, in Globecom Workshops, 2007 IEEE. Illusion attack on vanet applications—a message plausibility problem. (IEEE, 2007), pp. 1–8.
T Leinmüller, E Schoch, F Kargl, C Maihöfer, Decentralized position verification in geographic ad hoc routing. Secur. Commun. Netw.3(4), 289–302 (2010).
Article
Google Scholar
J Grover, NK Prajapati, V Laxmi, MS Gaur, in International Conference on Advances in Computing and Communications. Machine learning approach for multiple misbehavior detection in VANET. (Springer, 2011), pp. 644–653.
H Sedjelmaci, SM Senouci, MA Abu-Rgheff, An efficient and lightweight intrusion detection mechanism for service-oriented vehicular networks. IEEE Internet Things J.1(6), 570–577 (2014).
Article
Google Scholar
RP Barnwal, SK Ghosh, in Connected Vehicles and Expo (ICCVE), 2012 International Conference On. Heartbeat message based misbehavior detection scheme for vehicular ad-hoc networks (IEEE, 2012), pp. 29–34.
M Ghosh, A Varghese, AA Kherani, A Gupta, in Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE. Distributed misbehavior detection in VANETs (IEEE, 2009), pp. 1–6.
M Ghosh, A Varghese, A Gupta, AA Kherani, SN Muthaiah, Detecting misbehaviors in vanet with integrated root-cause analysis. Ad Hoc Netw.8(7), 778–790 (2010).
Article
Google Scholar
M Raya, P Papadimitratos, I Aad, D Jungels, J-P Hubaux, Eviction of misbehaving and faulty nodes in vehicular networks. IEEE J. Selected Areas Commun. 25(8) (2007).
P Golle, D Greene, J Staddon, in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks. Detecting and correcting malicious data in VANETs. (ACM, 2004), pp. 29–37.
TH-J Kim, A Studer, R Dubey, X Zhang, A Perrig, F Bai, B Bellur, A Iyer, in Proceedings of the Seventh ACM International Workshop on VehiculAr InterNETworking. VANET alert endorsement using multi-source filters (ACM, 2010), pp. 51–60.
A Vulimiri, A Gupta, P Roy, SN Muthaiah, AA Kherani, in International Conference on Research in Networking. Application of secondary information for misbehavior detection in VANETs. (Springer, 2010), pp. 385–396.
K Sha, S Wang, W Shi, r
d
4: Role-differentiated cooperative deceptive data detection and filtering in vanets. IEEE Trans. Veh. Technol.59(3), 1183–1190 (2010).
Article
Google Scholar
J Rezgui, S Cherkaoui, in Local Computer Networks (LCN), 2011 IEEE 36th Conference On. Detecting faulty and malicious vehicles using rule-based communications data mining (IEEE, 2011), pp. 827–834.
D Huang, SA Williams, S Shere, in Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference On. Cheater detection in vehicular networks. (IEEE, 2012), pp. 193–200.
T Yang, W Xin, L Yu, Y Yang, J Hu, Z Chen, in Asia-Pacific Web Conference. Misdis: an efficent misbehavior discovering method based on accountability and state machine in vanet. (Springer, 2013), pp. 583–594.
K Zaidi, MB Milojevic, V Rakocevic, A Nallanathan, M Rajarajan, Host-based intrusion detection for vanets: a statistical approach to rogue node detection. IEEE Trans. Veh. Technol.65(8), 6703–6714 (2016).
Article
Google Scholar
K Govindan, P Mohapatra, Trust computations and trust dynamics in mobile adhoc networks: a survey. IEEE Commun. Surv. Tutorials. 14(2), 279–298 (2012).
Article
Google Scholar
A Tajeddine, A Kayssi, A Chehab, in Computer and Information Technology (CIT), 2010 IEEE 10th International Conference On. A privacy-preserving trust model for VANETs. (IEEE, 2010), pp. 832–837.
NJ Patel, RH Jhaveri, Trust based approaches for secure routing in VANET: a survey. Procedia Comput. Sci.45:, 592–601 (2015).
Article
Google Scholar
P Wex, J Breuer, A Held, T Leinmuller, L Delgrossi, in Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE. Trust issues for vehicular ad hoc networks (IEEE, 2008), pp. 2800–2804.
A Rivero-García, I Santos-González, P Caballero-Gil, C Caballero-Gil, in Parallel, Distributed, and Network-Based Processing (PDP), 2016 24th Euromicro International Conference On. Vanet event verification based on user trust. (IEEE, 2016), pp. 313–316.
N Bismeyer, S Mauthofer, KM Bayarou, F Kargl, in Vehicular Networking Conference (VNC), 2012 IEEE. Assessment of node trustworthiness in vanets using data plausibility checks with particle filters. (IEEE, 2012), pp. 78–85.
B Płaczek, M Bernas, in International Conference on Computer Networks. Detection of malicious data in vehicular ad hoc networks for traffic signal control applications. (Springer, 2016), pp. 72–82.
H Al Falasi, N Mohamed, H El-Syed, in Hybrid Intelligent Systems. Similarity-based trust management system: data validation scheme. (Springer, 2016), pp. 141–153.
Z Cao, J Kong, U Lee, M Gerla, Z Chen, in INFOCOM Workshops 2008, IEEE. Proof-of-relevance: filtering false data via authentic consensus in vehicle ad-hoc networks. (IEEE, 2008), pp. 1–6.
F Dotzer, L Fischer, P Magiera, in World of Wireless Mobile and Multimedia Networks, 2005. WoWMoM 2005. Sixth IEEE International Symposium on A. Vars: A vehicle ad-hoc network reputation system. (IEEE, 2005), pp. 454–456.
N-W Lo, H-C Tsai, A reputation system for traffic safety event on vehicular ad hoc networks. EURASIP J. Wirel. Commun. Netw.2009(1), 125348 (2009).
Article
Google Scholar
Q Ding, X Li, M Jiang, X Zhou, in Wireless Communications and Signal Processing (WCSP), 2010 International Conference On. Reputation-based trust model in vehicular ad hoc networks. (IEEE, 2010), pp. 1–6.
Z Huang, S Ruj, M Cavenaghi, A Nayak, in Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium On. Limitations of trust management schemes in VANET and countermeasures. (IEEE, 2011), pp. 1228–1232.
C-H Kim, I-H Bae, in Embedded and Multimedia Computing Technology and Service. A misbehavior-based reputation management system for vanets. (Springer, 2012), pp. 441–450.
ZA Abdulkader, A Abdullah, MT Abdullah, ZA Zukarnain, Vehicular ad hoc networks and security issues: survey. Modern Appl. Sci.11(5), 30 (2017).
Article
Google Scholar
D Zhang, FR Yu, Z Wei, A Boukerche, in Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications. Software-defined vehicular ad hoc networks with trust management. (ACM, 2016), pp. 41–49.
AS Alkalbani, AM Tap, T Mantoro, in Information and Communication Technology for the Muslim World (ICT4M), 2013 5th International Conference On. Energy consumption evaluation in trust and reputation models for wireless sensor networks. (IEEE, 2013), pp. 1–6.
X Yao, X Zhang, H Ning, P Li, Using trust model to ensure reliable data acquisition in VANETs. Ad Hoc Netw.55:, 107–118 (2017).
Article
Google Scholar
A Kumar, JR Singh, D Singh, RK Dewang, in Computational Intelligence and Networks (CINE), 2016 2nd International Conference On. A historical feedback based misbehavior detection (HFMD) algorithm in VANET. (IEEE, 2016), pp. 15–22.
A Wasef, R Lu, X Lin, X Shen, Complementing public key infrastructure to secure vehicular ad hoc networks [security and privacy in emerging wireless networks]. IEEE Wireless Commun. 17(5) (2010).
B Premasudha, VR Ram, J Miller, R Suma, A review of security threats, solutions and trust management in VANETs. Int. J. Next-Generation Comput.7(1), 38–57 (2016).
Google Scholar
TRV Krishna, RP Barnwal, SK Ghosh, in Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE International Conference On. MDS-based trust estimation of event reporting node in vanet. (IEEE, 2013), pp. 315–320.
W Li, H Song, Art: an attack-resistant trust management scheme for securing vehicular ad hoc networks. IEEE Trans. Intell. Transport. Syst.17(4), 960–969 (2016).
Article
Google Scholar
RK Schmidt, T Leinmüller, E Schoch, A Held, G Schäfer, in Proceedings of the 4th IEEE Vehicle-to-Vehicle Communications Workshop (V2VCOM2008). Vehicle behavior analysis to enhance security in vanets (IEEE, 2008).
A Wu, J Ma, S Zhang, in Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th International Conference On. Rate: a RSU-aided scheme for data-centric trust establishment in vanets. (IEEE, 2011), pp. 1–6.
J Zhang, in Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference On. A survey on trust management for VANETs. (IEEE, 2011), pp. 105–112.
S Ahmed, K Tepe, in Wireless Communications and Networking Conference (WCNC), 2016 IEEE. Misbehaviour detection in vehicular networks using logistic trust. (IEEE, 2016), pp. 1–6.
H Zhu, X Lin, R Lu, P-H Ho, X Shen, in Communications, 2008. ICC’08. IEEE International Conference On. Aema: an aggregated emergency message authentication scheme for enhancing the security of vehicular ad hoc networks. (IEEE, 2008), pp. 1436–1440.
L-Y Yeh, Y-C Lin, A proxy-based authentication and billing scheme with incentive-aware multihop forwarding for vehicular networks. IEEE Trans. Intell. Transport. Syst.15(4), 1607–1621 (2014).
Article
Google Scholar
R Lu, X Lin, X Liang, X Shen, A dynamic privacy-preserving key management scheme for location-based services in VANETs. IEEE Trans. Intell. Transport. Syst.13(1), 127–139 (2012).
Article
Google Scholar
A Boualouache, S-M Senouci, S Moussaoui, A survey on pseudonym changing strategies for vehicular ad-hoc networks. IEEE Commun. Surv. Tutor (2017).